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Abstract

Upwind schemes are very well adapted to advection dominated ¯ows and have become popular for
applications involving the Euler system of equations. Recently, Riemann solver-based techniques such as
Roe's scheme have become a successful tool for numerical simulation of other conservation laws like the
shallow water equations. One of the disadvantages of this technique is related to the treatment of the
source terms of the equations. The conservativity of the scheme can be seriously damaged if a careless
treatment is applied. Previous papers studied the way to treat the terms arising from bed level changes.
This paper deals with the analysis of the main reasons leading to a correct treatment of the geometrical
source terms, that is, those representing the changes in cross-section which may be linked to the speci®c
dependence of the ¯ux function on the geometry. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Source terms; Shallow water equations; Roe's scheme; Channel with irregular geomatries; Shallow water
equations

1. Introduction

The explicit ®rst-order Roe's scheme is very popular in Gas Dynamics and has been
frequently reported in shallow water applications mainly in relation to advection dominated
¯ows [10]. The discretization of the source terms is usually done following pointwise or upwind
approaches. Vazquez-Cendon [11] showed that the upwinding approach was an improvement
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over the pointwise method for problems involving constant rectangular cross-section and bed
level variation. The cross-sectional shape variation was not considered in that work. In this
paper, it will be shown to perform rather poorly when an extension of the technique is
considered as applied to the shallow water equations with dominant source terms arising from
width variation. The scheme fails to reproduce the steady state of still water in a rectangular
channel with variations in bed slope and width. For a simple physical problem where the
solution is just a horizontal water level at rest, the scheme results in considerable oscillations in
the water levels and non-negligible discharges caused by poor treatment of the source terms. In
this paper, we adapt the upwind approach to overcome these di�culties. The work is related to
some recent contributions such as [8] and [9].
The starting point will be a homogeneous system representing a conservation law

@U

@t
� @F�x, U�

@x
� 0

where the conserved variables are U, their ¯uxes are F�x, U� and the Jacobian matrix will be
denoted by J, where

J � @F�x, U�
@U

:

The construction of Roe's scheme is based on a local linearization that requires the de®nition
of an analytic Jacobian [10]. For this discrete representation of the system, it is necessary that
the condition

DF � JDU �1�

holds among spatial increments of the variables F and U:
The case of a prismatic channel of rectangular cross-section will be presented ®rst as it is the

simplest case and the only one in which condition (1) holds. Then, the rectangular non-
prismatic case will illustrate where the problem is, and a way to solve it. Numerical results for
a laboratory experiment involving unsteady ¯ow over abrupt changes in slope will also be
presented. As a supplementary example, the scheme will be applied to a scalar case related to
solute transport in shallow water.
Roe's ®rst-order explicit scheme can have a dual interpretation, either, based on a

¯uctuation-signal model or on a numerical ¯ux model. Both the approaches have always been
considered equivalent for 1D cases. This is true in the case F � F�U� and no spatial dependence
in F: The second version is usually found in the Riemann solvers and conservative schemes
literature and often applied in the context of 2D extensions via ®nite volumes. The ®rst one is,
however, preferable to extend the scheme to CFL > 1 and to progress to multi-dimensional
upwinding in 2D. In the second section of this paper, it will be pointed out that the two
approaches di�er also in 1D cases in which there are cross-section variation in space, that is,
cases that may introduce a spatial dependence in the ¯ux function F. In case of a trapezoidal
cross-section, for instance, this dependence cannot be avoided.
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2. Numerical discretization of a 1D system

2.1. First-order Roe's method

Provided that Roe's linearization [10] is used to decouple the homogeneous part of a system
like

@U

@t
� @F�x, U�

@x
� R�x, U�, �2�

an approximate matrix ÄJ can be built whose eigenvalues ~lk and eigenvectors Äek satisfy for
every pair of nodal points �i, i� 1� in a 1D computational grid

DU
i�12
� Ui�1 ÿ Ui �

X
k

�~ak Äek�
i�12

�3�

DF
i�1

2
� Fi�1 ÿ Fi � ÄJ

i�1
2
DU

i�1
2

�4�

ÄJ
i�12

DU
i�1

2
�
X
k

ÿ
~lk ~ak Äek

�
i�12
: �5�

They have a formal expression similar to the eigenvectors and eigenvalues of the analytical
Jacobian in terms of average quantities. However, the average quantities are de®ned, the basic
idea is to calculate DU at every interface and propagate the di�erent k waves according to the
sign of their eigenvalues and the values of the local CFL numbers nk: As an example, if at

i� 1
2 , for k � 1, �~l1�

i�12
> 0, then each component of the ¯uctuation DU, DUj, j � 1, 2, will

a�ect the corresponding variable Uj so that, the signalÿ
n1 ~a1 ~e1j

�
i�1

2
is added to i� 1

where

n1 � Dt
Dx

ÿ
~l1
�
i�1

2

At the end, for the homogeneous problem �R�x, U� � 0�, every computational node gets a total
contribution

Un�1
i � Un

i ÿ
Dt
Dx

��
~l
ÿ
1 ~a1 Äe1

�
i�1

2

�
�

~l
ÿ
2 ~a2 Äe2

�
i�12
�
�

~l
�
1 ~a1 Äe1

�
iÿ12
�
�

~l
�
2 ~a2 Äe2

�
iÿ1

2

�
�6�

where

~l
2

k �
1

2

ÿ
~lk2j~lkj

�
�7�
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This version of Roe's ®rst order scheme will be addressed as the signal model. There is an
alternative presentation of the scheme that is even more widespread, it is the numerical ¯ux
model. It is based on the de®nition of a numerical ¯ux characteristic of the conservative
schemes. Using the de®nition of ~l

2

k (7)

Un�1
i � Un

i

ÿ Dt
2Dx

"X
k

ÿ
~lk ~ak Äek

�
i�1

2
�
X
k

ÿ
~lk ~ak Äek

�
iÿ1

2
ÿ
X
k

ÿ
j~lkj~ak Äek

�
i�12
�
X
k

ÿ
j~lkj~ak Äek

�
iÿ1

2

#
�8�

This expression is then transformed into

Un�1
i � Un

i ÿ
Dt
Dx

�
f�
i�1

2

ÿ f�
iÿ12

�
with a numerical ¯ux function crossing every interface

f�
i�12
� 1

2
�Fi � Fi�1� ÿ 1

2

X
k

ÿ
j~lkj~ak Äek

�
i�1

2
�9�

using Eq. (1), that is, using as the necessary condition,X
k

ÿ
~lk ~ak Äek

�
i�1

2
� DF

i�1
2
� Fi�1 ÿ Fi

2.2. Discretization of the source terms

There are two ways of dealing with the source terms found in the partial di�erential
equations. These are, the pointwise approach, i.e. evaluation of the source term functions at
the grid point, and the upwind approach, that is, projection of the source terms onto the basis
of eigenvectors. We will comment on both of them and compare their performance.

2.2.1. Pointwise approach
The simplest pointwise option for a generic source term function R(x, U) can be expressed

as:

Ri1R
ÿ
xi, Un

i

�
which consists of a simple evaluation at the nodal point using the already known dependent
variables. Other possibilities also include some form of average between neighbouring nodal
points. Firstly, all signals are propagated to update the dependent variables as described in the
previous section, then the source terms are added to the updated variables.
Problems may arise, however, when the source term contains spatial derivatives and a

de®nition of their discrete representation must be established. This di�culty will be met for the
discretization of the bottom slope (S0) and variable width (I2) source terms.
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2.2.2. Upwind approach
The upwind approach for the treatment of the source terms is based on the reasoning that

the homogeneous system can be discretized as in (6) so that

Un�1
i ÿ Un

i �
Dt
Dx

24 X
k�

~lk ~ak Äek

!
iÿ1

2

�
 X

kÿ
~lk ~ak Äek

!
i�12

35 � 0

where k2 indicate the positive or negative eigenvalues, i.e. wave speeds, at every interface.
Then, the source terms can be discretized as

RDx �
X
k

~bk Äek: �10�

The signal that is propagated to alter the variables at the nodes is modi®ed by the in¯uence of
the source terms always according to the signs of the local wave speed (eigenvalue), and the
discretization of the system becomes:

Un�1
i � Un

i ÿ
Dt
Dx

24 X
k�

�
~lk ~ak ÿ ~bk

�
Äek

!
iÿ1

2

�
 X

kÿ

�
~lk ~ak ÿ ~bk

�
Äek

!
i�12

35 �11�

The upwind philosophy of this decomposition of the source terms becomes clearer following
the notation introduced by Bermudez and Vazquez-Cendon [3]. The source term in¯uencing
node i consists of a part from the left half cell and another from the right half cell. The
upwind discretization determines the relative amount of these two parts. Expression (10) can be
rewritten as

RDx � Xbbb

where

X �
�
1 1
l1 l2

�
bbb �

�
b1
b2

�
:

Matrix X has the property of diagonalising the Jacobian of the system

LLL � Xÿ1JX �
�
l1 0
0 l2

�
However, it is possible to write

RDx � Xbbb � XLLLLLLÿ1bbb � XLLL�LLLÿ1bbb� XLLLÿLLLÿ1bbb

with

LLL2 � 1

2
�LLL2jLLLj� and jLLLj �

� jl1j 0
0 jl2j

�
:
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The contribution to nodal point i is written as a sum of left and right portions cL and cR: On
a uniform mesh

RiDx � 1

Dx

�
Dx
2

ÿ
cccL

�
iÿ12
�Dx

2

ÿ
cccR

�
i�1

2

�
� 1

2

��HLbbb�
iÿ1

2
��HRbbb�

i�1
2

� �12�

where

HL �
�

1� s1 1� s2
~l1�1� s1� ~l2�1� s2�

�
HR �

�
1ÿ s1 1ÿ s2

~l1�1ÿ s1� ~l2�1ÿ s2�
�
:

In the above expressions

cccL � ~b
�

s1 ÿ s2
~l1�1� s1� ÿ ~l2�1� s2�

�
cccR � ~b

�
s2 ÿ s1

~l1�1ÿ s1� ÿ ~l2�1ÿ s2�
�

and sk � sign�~lk�: These are all equivalent formulations.
In the context of the numerical ¯ux formulation, the upwind source terms are incorporated

as follows:

Un�1
i � Un

i ÿ
Dt
Dx

�
f�
i�1

2

ÿ f �
iÿ1

2

�� Dt
�
1

2

ÿ
cccL

�
iÿ1

2
�1
2

ÿ
cccR

�
i�1

2

�
�13�

2.3. Roe's scheme when F � F�x, U�

In this case, when the ¯ux of the conserved variables contains an extra dependence, what
happens is

DF 6�JDU

instead

DF � JDU� V �14�
The ¯ux discretization (6) only considers the part JDU, then it is necessary to move the term V
to the right hand side of the equations. Given the form of this extra source term, the ¯ux is
corrected because V is subtracted from DDDF and added to the source terms

ÃR � Rÿ V �15�
The ®nal form of the source term is then upwinded according to the previous scheme. On the
other hand, whenever the ¯ux function depends also on x, it is necessary to introduce the
corresponding corrections in the numerical ¯ux. In this case,X

k

ÿ
~lk ~ak Äek

�
i�1

2
� DF

i�1
2
ÿ V

i�1
2
� Fi�1 ÿ Fi ÿ V

i�1
2

Thus,
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Un�1
i � Un

i ÿ
Dt
Dx

"
1

2

�
Fi � Fi�1 � V

i�1
2

�ÿ 1

2

X
k

ÿ
j~lkj~ak Äek

�
i�12
ÿ1
2

�
Fi � Fiÿ1 ÿ V

iÿ1
2

�

� 1

2

X
k

ÿ
j~lkj~ak Äek

�
iÿ1

2
�
#
: �16�

The de®nition of a corrected numerical ¯ux becomes

Äf
�
i�12
� 1

2

�
Fi � Fi�1 � V

i�1
2

�ÿ 1

2

X
k

ÿ
j~lkj~ak Äek

�
i�12

�17�

Äf
�
iÿ12
� 1

2

�
Fi � Fiÿ1 ÿ V

iÿ1
2

�ÿ 1

2

X
k

ÿ
j~lkj~ak Äek

�
iÿ12

�18�

3. The shallow-water equations

The shallow water or St. Venant equations are a simpli®ed model of some free surface ¯ows
whose derivation can be found in [5], or in [1]. They can be written as the following system of
equations:

@A

@t
� @Q
@x
� 0

@Q

@t
� @

@x

�
Q2

A
� gI1

�
� gI2 � gA

ÿ
S0 ÿ Sf

�
: �19�

This is a conservative formulation where A � A�x, t� is the wetted cross-sectional area (see
Fig. 1)

A�x, t� �
�h�x, t�
0

s�x, Z� dZ

s�x, h� � b�x�,
Q � Q�x, t� is the discharge and g is the acceleration due to gravity. I1 represents a hydrostatic
pressure force term

I1 �
�h�x, t�
0

�hÿ Z�s�x, Z� dZ

in a section of water level surface h and width
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s�x, Z� � @A�x, t�
@Z

and I2 accounts for the pressure forces in a volume of constant depth h due to longitudinal
width variations,

I2 �
�h�x, t�
0

�hÿ Z�@s�x, Z�
@x

dZ:

According to the de®nitions of I1 and I2, and following Leibnitz's rule of derivation of an
integral,

@I1
@x
� I2 � A

@h

@x
�20�

The bed slope is the spatial partial derivative of the bottom elevation z,

S0 � ÿdz

dx

and the last term contains the e�ects of viscosity through friction with the solid surfaces. The
quantity Sf denotes the energy grade line and can be expressed in terms of the rest of the
variables of interest by means of semiempirical expressions such as Manning or Chezy's laws
[5].
It is possible to rewrite the Eqs. (19) in the form:

@U

@t
� @F�x, U�

@x
� R�x, U� �21�

Fig. 1. Cross-sectional geometry.
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so that

U � �A, Q�T

F �
�
Q,

Q2

A
� gI1

�T

R � ÿ0, gI2 � gA
ÿ
S0 ÿ Sf

��T
,

The Jacobian matrix of this system is

J � @F

@U
�

0B@ 0 1

g
A

b
ÿ Q2

A2
2
Q

A

1CA � � 0 1
c2 ÿ u2 2u

�
,

where it has been used that, in general,

@I1
@A
� A

b
and c �

�������
g
A

b

r
: �22�

The eigenvalues and eigenvectors of J are:

l1, 2 � u2c

e1, 2 � �1, u2c�T:

3.1. Flow in a constant width rectangular channel

In the case of rectangular cross-section of constant breadth

I1 � A2

2b
, I2 � 0:

so that, neglecting friction for the moment

U � �A, Q�T

F �
�
Q,

Q2

A
� gA2

2b

�T

R � �0, gAS0�T:
In order to check condition (1)
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DU �
�
DA
DQ

�
�)JDU �

0B@ DQ�
g
A

b
ÿ Q2

A2

�
DA� 2

Q

A
DQ

1CA
On the other hand

DF �

0B@DQ

D

�
Q2

A

�
� g

2b
D�A2�

1CA �
0B@ DQ�

g
A

b
ÿ Q2

A2

�
DA� 2

Q

A
DQ

1CA
so that in this case it is true that

DF � JDU

since F � F�U�: The consequence is that, for the ¯ux discretization, Roe's scheme, as has been
described, performs well as in [2].

3.2. Non-prismatic rectangular channel

When the rectangular channel has a variable width

@b

@x
� bx 6�0

the conservative system is formed by

U � �A, Q�T

F �
�
Q,

Q2

A
� gA2

2b

�T

R � �0, gI2 � gAS0�T, �23�
where now

I2 � A2

2b2
bx

The Jacobian matrix of the system is the same as before and we can repeat:

DU �
�
DA
DQ

�
�)JDU �

0B@ DQ�
g
A

b
ÿ Q2

A2

�
DA� 2

Q

A
DQ

1CA
But now F � F�x, U� and
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DF �

0B@ DQ

D

�
Q2

A

�
� g

2
D

�
A2

b

�1CA �
0B@ DQ�

g
A

b
ÿ Q2

A2

�
DA� 2

Q

A
DQÿ gA2

2b2
Db

1CA
that is, now

V �

0B@ 0

ÿgA
2

2b2
Db

1CA: �24�

4. Application of Roe's scheme to the shallow water equations

4.1. Prismatic channel: F � F�U�

The approximate Riemann solver is based on some average quantities ~u, ~c, in terms of which
the eigenvalues and eigenvectors of the approximate Jacobian are expressed

~l1, 2 � ~u2 ~c

Äe1, 2 � �1, ~u2 ~c�T:
Using (3) and omitting the subscripts for the sake of clarity

DA � ~a1 � ~a2

DQ � ~a1� ~u� ~c� � ~a2� ~uÿ ~c�
the coe�cients are then

~a1 �
� ~cÿ ~u�DA� DQ

2 ~c
~a2 �

� ~c� ~u�DAÿ DQ
2 ~c

In order to determine the average velocity and celerity, ~u and ~c, from Eq. (5) we write

DQ � ~l1 ~a1 � ~l2 ~a2�
g
A

b
ÿ Q2

A

�
DA� 2

Q

A
DQ � ~l1 ~a1� ~u� ~c� � ~l2 ~a2� ~uÿ ~c� � 2 ~uDQ�

ÿ
~c2 ÿ ~u2

�
DA

The ®rst is just an identity. From the second, values of the averages wanted can be found
requiring two separate conditions

g
A

b
DA � ~c2DA
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ÿQ
2

A
DA� 2

Q

A
DQ � 2 ~uDQÿ ~u2DA

so that the following de®nitions can be stated [7]

~u
i�12
� Qi�1

�����
Ai

p �Qi

���������
Ai�1
p��������������

AiAi�1
p ÿ ���������

Ai�1
p � �����

Ai

p � �25�

~c
i�12
�

�������������������������������������������
g

2

 �
A

b

�
i

�
�
A

b

�
i�1

!vuut �26�

The decomposition of the source terms can be expressed as

R �

0BB@
0

g

 
ÿ ~Azx ÿ ~A ~Sf �

~A
2

2 ~b
2
bx

!1CCA � 1

Dx

�
~b1

�
1

~u� ~c

�
� ~b2

�
1

~uÿ ~c

��

giving

~b1 � ÿ ~b2 � ~b

where

~b � Dx
2 ~c

g

 
ÿ ~Azx ÿ ~A ~Sf �

~A
2

2 ~b
2
bx

!
� g

2 ~c

 
ÿ ~ADzÿ ~ADx ~Sf �

~A
2

2 ~b
2
Db

!
: �27�

There is still some freedom in the choice of ~A, ~b, ~Sf, Dz and Db: In the following section, a
validation of this numerical technique using experimental data is presented. The criterion for
the selection of the particular average values used is justi®ed in the study of the steady solution
next.

4.1.1. Numerical versus experimental results
Some results are presented for water ¯ow in a prismatic rectangular channel containing bed

variations. The test case was developed as a laboratory experiment by J.M. Hiver from the
Free University of Brussels, Belgium. It consists of a constant width channel with an obstacle
in the shape of a triangle. Initially, a gate placed at 15.5 m from the left end keeps water at
rest upstream at a level of 0.75 m. Downstream of the gate, the channel is dry except for a
pool of still water bounded by the obstacle and a downstream weir 0.15 m high. The gate is
suddenly removed and the volume of water is released. The water wave advances over the ¯at
bed ®rst and over the adverse slope afterwards. Figs. 2 and 3 display some results at two times
after the gate removal using the upwind and pointwise approaches for the discretization of the
source terms. They show water pro®les along the channel at times t � 3 and 10 s. They are not
compared to any exact solution since the ideal dam-break ¯ow exact solution is not applicable
here where friction and slope changes are present and determinant. The friction term was
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included with a Manning roughness coe�cient n � 0:0125 following the experimental team
suggestion. Figs. 4 and 5 display a comparison of the results obtained with the upwind version
against measured data at gauge points located 4 and 20 m from the gate, respectively.

4.1.2. Study of the steady solution: water at rest
In order to understand the di�erent behaviour in these two ®gures, an analysis of the

resulting schemes with upwind and pointwise discretizations of the source terms is done. This

Fig. 2. Dam-break wave evolution. Water level. N � 100, t � 3 s.

Fig. 3. Dam-break wave evolution.Water level. N � 100, t � 10 s.
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Fig. 4. Water level. Numerical results (thin line) versus experimental data (thick line) x � 19:5 m.

Fig. 5. Water level. Numerical results (thin line) versus experimental data (thick line) x � 35:5 m.
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analysis is related with the C Property in [3], and with the de®nition of the ``well-balanced
scheme'' in [8].
The numerical scheme can be represented by

Un�1
i � Un

i ÿ LHS� RHS

where LHS and RHS denote for the node i the ¯ux and source discretization, respectively.
Then, for a stationary solution the scheme must verify

LHS � RHS:

For this test problem the ¯ux discretization is

LHS � Dt
2Dx

0BB@
ÿ� ~cDA�

i�12
�� ~cDA�

iÿ1
2ÿ

~c2DA
�
i�1

2
�
ÿ
~c2DA

�
iÿ1

2

1CCA
The pointwise discretization of the source term is

RHSp � Dt
Dx

 
0

ÿgDx
�
�Azx�i�

ÿ
ASf

�
i

� !

and the upwind discretization of the source term is

RHSu � Dt
Dx

0BB@ÿ
~b
i�12
� ~b

iÿ1
2ÿ

~c ~b
�
i�1

2
�
ÿ
~c ~b
�
iÿ12

1CCA:
where b is given by (27). It is easy to conclude that

LHSÿ RHSp � Dt
2Dx

0@ÿ� ~cDA�i�12�� ~cDA�iÿ1
2

0�Dx�2

1A
where the ®rst component of LHSÿ RHSp is 0�Dx� and is a discretization of

ÿDx @
@x

�
c
@A

@x

�
:

This term is responsible for the spurious wave in Figs. 2 and 3. Then, to vanish this term it
should be necessary to reduce considerably Dx:
On the contrary, with the upwind approach we obtain LHS � RHSu for the choices

Dz � zi�1 ÿ zi ~h � 1

2
�hi�1 � hi� ~A � ~h ~b

It is worth noting here that the C Property supplies the constraint on the average values
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related to the source terms in the same way as the U Property in Roe's method allows the
de®nition of the standard Roe average.

4.2. Non-prismatic channel: F � F�x, U�

As commented before, in this case the source term can be rede®ned

ÃR � Rÿ V �
�
0,

gA2

b2
bx � gAS0

�T

�28�

If the system is modi®ed in this sense, so that it retains in the left-hand side, only the terms
ful®lling condition (1), then a di�erent source term is projected, giving in general

ÃR �

0BB@
0

g

 
ÿ ~Azx ÿ ~A ~Sf �

~A
2

~b
2
bx

!1CCA � 1

Dx

�
~b1

�
1

~u� ~c

�
� ~b2

�
1

~uÿ ~c

��

that is

~b1 � ÿ ~b2 � ~b

~b � Dx
2 ~c

g

 
ÿ ~Azx ~A ~Sf �

~A
2

~b
2
bx

!
� g

2 ~c

 
ÿ ~ADzÿ ~ADx ~Sf �

~A
2

~b
2
Db

!
: �29�

Note that the only di�erence is a factor 2 in the last term. In the next section, the numerical
results for an academic still water test case are presented. The determination of the average
values is justi®ed later.

4.2.1. Numerical results
The test case consists of a channel of rectangular cross-section with variable width and

bottom level. The variations of width with distance are displayed in Fig. 6. A constant 12 m
level of water at rest is imposed at t � 0: The analytical solution is zero discharge and a
constant water surface level everywhere, as in the previous case.
In the pointwise version of the scheme's implementation, the following was used

S0i1
1

2

�
S
0i�1

2
� S

0iÿ1
2

�
S
0i�1

2
� ÿzi�1 ÿ zi

Dx

I2i1
1

2

�
I
2i�1

2
� I

2iÿ12

�
, I

2i�1
2
� 1

2
h2
i

bi�1 ÿ bi
Dx

:

Fig. 7 corresponds to the results supplied by this pointwise version. Fig. 8 has been obtained
using Roe's scheme and upwind source term discretization but without corrected ¯ux, that is,
based on de®nitions (11) and (27). As the picture makes plain, the algorithm fails to reproduce
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Fig. 6. Channel width variation.

Fig. 7. Steady state in the channel with variable width. Pointwise source terms with non-corrected ¯ux. N � 300,
t � 200 s.
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Fig. 8. Steady state in the channel with variable width. Upwind source terms with non-corrected ¯ux. N � 300,

t � 200 s.

Fig. 9. Steady state in the channel with variable width. Upwind source terms with non-corrected ¯ux. N � 300,
t � 200 s.
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the exact steady state. The application of the corrections proposed in this report, (11) and (28)
leads to the exact result. It is plotted in Fig. 9.

4.2.2. Study of the steady case: water at rest
The importance of this factor, is again related to what happens at the discrete level when

equilibrium is sought (see [6]). A zero velocity steady state will be assumed in a rectangular
channel with variations in bed level and width, i.e., v � Q � 0, h 6�cte, z6�cte, h� z � cte,
b6�cte: Using Eqs. (6) and (7) and the fact that in this case

~a1 � ~a2 � DA
2
:

the ¯ux discretization (LHS) gives for node i

LHS � Dt
2Dx

0BB@
ÿ� ~cDA�

i�12
�� ~cDA�

iÿ1
2ÿ

~c2DA
�
i�1

2
�
ÿ
~c2DA

�
iÿ1

2

1CCA
On the other hand, the discrete source terms (RHS), from Eq. (11) or (12), supply a
contribution

RHS � Dt
Dx

0BB@ÿ
~b
i�1

2
� ~b

iÿ1
2ÿ

~c ~b
�
i�12
�
ÿ
~c ~b
�
iÿ1

2

1CCA:
Using Eq. (26) for ~c and the average values

Dz � zi�1 ÿ zi Db � bi�1 ÿ bi

~h � 1

2
�hi�1 � hi� ~b � 1

2
�bi�1 � bi�

~A � ~h ~b �30�
it is easy to verify that LHS � RHS only if ~b is given by Eq. (28). It could also be veri®ed that,
in case of constant width channel, the discrete equilibrium is also achieved.
Having found a solution to achieve equilibrium when using Roe's ¯uctuation signal scheme

in the presence of geometrical source terms, we would like to know whether it would hold
when using the (non corrected) numerical ¯ux approach instead. For this purpose, the
updating of nodal point i is written as

Un�1
i � Un

i ÿ
Dt
Dx

�
f �
i�1

2

ÿ f �
iÿ1

2

�
|���������������{z���������������}

LHS

� Dt
�
1

2

ÿ
cccL

�
iÿ12
�1
2

ÿ
cccR

�
i�1

2

�
|�����������������������{z�����������������������}

RHS

: �31�
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The answer is that the equilibrium is broken with the de®nition of b given either by Eq. (27) or
(29). Figs. 10 and 11 display the results with (29).
In order to understand what happens, an analysis of the discretization (31) trying to enforce

equilibrium �Un�1
i � Un

i � will be repeated here. With the de®nition of the quantities LHS and
RHS, we require, as before,

LHS � RHS

for equilibrium.
Using again the zero velocity steady state, the numerical ¯ux balance gives

LHS � Dt
2Dx

0BB@
ÿ� ~cDA�

i�12
�� ~cDA�

iÿ1
2�

gA2

2b

�
i�1
ÿ
�
gA2

2b

�
iÿ1

1CCA:
On the other hand, the discrete source terms (RHS)

Fig. 10. Water level at steady state in the channel with variable width. Upwind source terms with non-corrected
numerical ¯ux. N � 300, t � 200 s.
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RHS � Dt
Dx

0BB@ÿ
~b
i�1

2
� ~b

iÿ1
2ÿ

~c ~b
�
i�12
�
ÿ
~c ~b
�
iÿ1

2

1CCA:
It could be said, strictly speaking, the numerical ¯ux function has to be changed in this case. It
can nevertheless still be expressed in terms of the numerical ¯ux (9) if only the corrections to
the numerical ¯ux are also passed to the right hand side.
It is simple to try and verify that the previous choice (30) for the average values together

with the de®nition of b (29) produces the balance in the ®rst components (mass equation) but
not in the second components (momentum equation).
Equilibrium in the second components can be achieved with the original de®nition of b, (27)

and the averages

~h �
������������
hi�1hi

p
~A � 1

2
�bi�1hi�1 � bihi�: �32�

This choice however perturbs the mass balance. Full equilibrium in this case requires double
de®nition of the coe�cient and averages that would not be easy to obtain in unsteady cases.
By using Eqs. (29) and (30) for the mass equation and Eqs. (27) and (31) for the momentum

Fig. 11. Discharge at steady state in the channel with variable width. Upwind source terms with non-corrected
numerical ¯ux. N � 300, t � 200 s.
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equation, the steady state is satisfactorily achieved as Figs. 12 and 13 show. The use of the new
corrections associated with the numerical ¯ux achieve the desired exact solution.

5. Application to a 1D solute transport test case

A di�erent test case has been selected to illustrate the details of the techniques referred in
this paper for a scalar case. The test case that has been used for this purpose is a Riemann
problem in the context of 1D shallow water ¯ow. It is characterized by discontinuous initial
water levels at rest and discontinuous initial distribution of a solute concentration in the water.
This problem is generated by the 1D shallow water equations previously presented and a

solute mass conservation equation:

@h

@t
� @q
@x
� 0

@q

@t
� @

@x

�
u2h� g

h2

2

�
� 0

Fig. 12. Water level at steady state in the channel with variable width. Upwind source terms with corrected
numerical ¯ux. N � 300, t � 200 s.
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@c

@t
� u

@c

@x
� 0 �33�

where h is the water depth, u is the depth averaged water velocity and q � uh represents the
unit discharge, c represents the depth averaged solute concentration and g is the acceleration
due to gravity. Note that the abuse in notation given by the repetition of the name c for a new
variable is due to the fact that the wave surface celerity will not be used any more in what
follows. The initial conditions are

h�x, 0� �

8>><>>:
hL if xRL

2

hR if x >
L

2

q�x, 0� � 0:

c�x, 0� �

8>><>>:
cL if xRL

2

cR if x >
L

2

�34�

Fig. 13. Discharge at steady state in the channel with variable width. Upwind source terms with corrected numerical
¯ux. N � 300, t � 200 s.
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Calculation times were used so as to avoid interaction with the extremities of the channel. The
boundary conditions are then trivial.
This idealized dam-break problem was chosen because it is a classical example of nonlinear

¯ow with shocks to test conservation in numerical schemes and, at the same time, has an exact
solution. The coupling of the equations in the system (33) is such that the dynamics of the
concentration depends on the water ¯ow dynamics but the hydraulic problem is independent of
the concentration. The exact dam-break ¯ow solution consists of a sharp shock wave
advancing downstream and a smooth depression wave propagating upstream. It can be shown
[4] that the exact solution for the wave generated by the initial discontinuity in concentration is
a step like wave that progresses at a slower rate than the water wave. The performance of the
®rst order upwind scheme with Roe's discretization for the solution of the dam-break water
¯ow has previously been tested.
The contribution of this section is to analyze the discretization of the partial di�erential

equation for the concentration in (32). In order to do that, we start recalling the general
procedure for the numerical resolution of a scalar conservation law

@c

@t
� @f�c�

@x
� 0, l � @f�c�

@c
�35�

in a regular discrete mesh fxi, i � 1, N g by means of the ®rst order upwind scheme. The
average discrete advection velocity at an interface x

i�12
has to be de®ned

~l
i�12
�

8><>:
fi�1 ÿ fi
ci�1 ÿ ci

if ci�1 ÿ ci 6�0

li if ci�1 ÿ ci � 0

�36�

so that contributions of di�erent sign emerge from the interface according to the sign of c
i�1

2

Df 2

i�12
� l2

i�1
2

Dc
i�1

2

and the function at node i for instance, is updated in time Dt, according to contributions from
left and right.

cn�1i � cni ÿ
Dt
Dx

�
Df �

iÿ1
2

� Df ÿ
i�1

2

�
: �37�

Usually, a numerical ¯ux is de®ned and the above re-expressed

cn�1i � cni ÿ
Dt
Dx

�
f �
i�1

2

ÿ f �
iÿ12

� �38�

with

f �
i�1

2

� 1

2
�fi�1 � fi� ÿ 1

2
jl

i�12
jDc

i�1
2
:
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These are the two versions of the scheme corresponding to the signal and ¯ux methods seen in
Section 2.
In what follows, we try to apply these ideas to the partial di�erential equation for the

concentration:

@c

@t
� u

@c

@x
� 0 �39�

The test case selected corresponds to initial values for the water depth ratio hL:hR of 10:1 and
for the concentration ratio cL:cR of 0.4:0. The results obtained with di�erent options are
considered separately and numbered for the sake of clarity in the dicussion.
Figs. 14±16 show results for the concentration wave obtained with the signal scheme. Since

the equation we are dealing with is not in the form of a conservation law, we do not have a
physical ¯ux whose discrete values fi can be used to de®ne the average advection velocity as in
Eq. (36). So, the ®rst question is about the most convenient way to de®ne the average
advection velocity ~l

i�1
2
:

1. Fig. 14 was obtained using

~l
i�1

2
� 1

2
�ui � ui�1�,

where ui is the discrete velocity of the shallow water equations and then

~l
2

i�1
2
� 1

2

�
~l
i�1

2
2j~l

i�1
2
j
�

The numerical results from this option will be used as reference results to compare with
those obtained from the other options.

Fig. 14. Options 1 and 3. Roe's signal scheme: ~l
i� 1

2
� 1

2 �ui � ui�1�:
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2. The numerical results are analogous if the average velocity is taken as that supplied by the
water ¯ow Riemann solver, that is,

~l
i�1

2
� ~u

i�1
2

and ~u is de®ned in (25). This is shown in Fig. 15 with continuous line and is practically
coincident with the discontinuous line from option 1.
The formulation for the concentration equation as a conservation law is

Fig. 15. Option 2. Roe's signal scheme: ~l
i� 1

2
� ~u

i� 1
2
(continuous line).

Fig. 16. Option 4. Roe's signal scheme. Incorrect ¯ux formulation (continuous line).
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@c

@t
� @cu
@x
� c

@u

@x
�40�

where the introduced ¯ux f�x, c� � u�x, t�c�x, t� implies the existence of a source term. And
due to the fact that f � f�x, c� and not only f � f�c�, we have one V term like in Eq. (14),
more precisely V � c @u@x :

3. Roe's signal scheme with this conservative formulation induces the option to apply the
development expressed in Section 2.3, to upwind and modify the physical ¯ux, which is
equivalent to the de®nition of ~l

i�12
proposed in option 1, and then upwind the ®nal source

term. Nevertheless, this option is actually the same as the ®rst one, because the correction of
the ¯ux, V, cancels the source term and returns to the non-conservative formulation of the
equation.

4. It is obvious that the bad assumption for the Roe's signal scheme is to consider
fi�x, c� � �uc�i, and to replace this function in (36), without modifying the ¯ux. Fig. 16
shows the bad results versus those from option 1.
Figs. 17 and 18 represent the solution obtained with Roe's numerical ¯ux scheme. We

only need to consider the ¯ux because, as it has been mentioned, the ®nal source term is
null.

5. Fig. 17 corresponds to the modi®ed numerical ¯ux given by Eqs. (17) and (18) which
involve the correction term

V
i�1

2
� c

i�1
2
Du

i�1
2

and it shows the correct results. The numerical results are identical to those from option 1.
6. Fig. 18 corresponds to a case in which (36) has been applied based on a physical ¯ux

de®ned as f�x, c� � �uc�, that is without ¯ux modi®cation. As it has been established in
Section 2.3, this provides incorrect results. In this ®gure, the comparison with the results in
Fig. 14 is done again.

Fig. 17. Option 5. Roe's numerical ¯ux scheme. Modi®ed ¯ux (continuous line).
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6. Conclusions

The present work leads to the conclusion of the importance of the careful upwind treatment
of the source terms when dealing with variable geometries in the context of Riemann solver
based numerical schemes.
The extension of the formulation of Roe's discretization for homogeneous systems to

systems involving source terms is not straightforward in general. Some di�erences arise
between the di�erential and the discrete formulation of the equations. The ¯ux di�erence
splitting has to be performed retaining only the part depending on the conserved variables to
represent the convective ¯ux. All other dependences are to be moved to modify the source
terms of the di�erential equations.
Two formulations of Roe's scheme have been presented, one based on a signal approach and

the other involving the de®nition of a numerical ¯ux function. Both approaches require a
proper de®nition of the ¯ux di�erence splitting. The scalar example on 1D advection of a
concentration in water highlights the applicability of these concepts to conservation laws, in
which, the ¯ux function is not only a function of the conserved variables but also depends on
the spatial variable.
The work presented deals only with rectangular geometries. Investigations in course indicate

that the same kind of corrections must be applied to other geometries, leading to similar
successful results. Future work will address this aspect as well as the correct numerical
treatment of source terms when using a second-order scheme for the ¯ux discretization.
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Fig. 18. Option 6. Roe's numerical ¯ux scheme. Modi®ed ¯ux (continuous line).
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