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Implicit schemes with large time step for non-linear equations:
application to river �ow hydraulics
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SUMMARY

In this work, �rst-order upwind implicit schemes are considered. The traditional tridiagonal scheme is
rewritten as a sum of two bidiagonal schemes in order to produce a simpler method better suited for
unsteady transcritical �ows. On the other hand, the origin of the instabilities associated to the use of
upwind implicit methods for shock propagations is identi�ed and a new stability condition for non-linear
problems is proposed. This modi�cation produces a robust, simple and accurate upwind semi-explicit
scheme suitable for discontinuous �ows with high Courant–Friedrichs–Lewy (CFL) numbers.
The discretization at the boundaries is based on the condition of global mass conservation thus

enabling a fully conservative solution for all kind of boundary conditions.
The performance of the proposed technique will be shown in the solution of the inviscid Burgers’

equation, in an ideal dambreak test case, in some steady open channel �ow test cases with analytical
solution and in a realistic �ood routing problem, where stable and accurate solutions will be presented
using CFL values up to 100. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: implicit schemes; upwind discretization; shallow water; unsteady �ow with shocks;
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1. INTRODUCTION

Implicit schemes are well known for the property of allowing numerical stability in the reso-
lution of partial di�erential equations in presence of time steps not restricted by the Courant–
Friedrichs–Lewy (CFL) condition. Therefore, they have traditionally been the most attractive
methods in CFD for steady or gradually unsteady �ows. Computational hydraulics has been
a �eld of frequent search for accurate and robust implicit schemes [1, 2].
Some research has been recently oriented to the development of new implicit techniques

able to deal with transcritical �ows in order to overcome de�ciencies found in previous
implicit methods. Among them, for instance, the tridiagonal scheme of Beam–Warming [3]
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and the two-step bidiagonal implicit MacCormack scheme [4], extended by Casier et al. [5]
and applied by Meselhe et al. [6] to channel and river �ows. These methods, although able to
capture transcritical transitions and discontinuities, are not free from numerical oscillations and
require the addition of arti�cial viscosity in order to attenuate them. The implicit �rst-order
upwind scheme proposed by Yee [7] was the �rst non-oscillatory shock capturing implicit
scheme.
The results from the mentioned schemes are, however, characterized by a limitation in the

allowable time step size in cases of unsteady and discontinuous �ow. It is usually found that
CFL values bigger than 3 lead to instabilities in the resolution of moving front waves. This is
due to a poor treatment of the linearization of the implicit �ux terms, which are often locally
evaluated.
In this work, new upwind implicit schemes are presented driven by the interest in accurate

and e�cient river �ow modelling. In the line of previous upwind implicit schemes, a new
version of the tridiagonal implicit upwind scheme is proposed expressing it as a sum of two
bidiagonal schemes. This modi�cation makes it simpler and slightly better adapted to the
solution of unsteady transcritical problems.
The application of high CFL numbers when using a conservative implicit scheme for the

solution of a non-linear problem with discontinuities originates a special kind of instability
at the front position. This is analysed in Appendix B and a new condition is de�ned so that
the numerical schemes do not amplify discontinuities in time (no discontinuity ampli�cation
condition, NDA). The NDA condition is applied to a new semi-explicit bidiagonal scheme in
order to remove the above-mentioned stability restriction and to produce a simple, robust and
accurate upwind scheme suitable for discontinuous �ows in complex topography and able to
cope with high CFL numbers. The performance of the proposed technique will be shown in
several examples going from test cases using the non-linear Burgers’ equation to a river �ood
case of practical interest.

2. THE EQUATIONS

We are interested in solving as e�ciently as possible 1D hyperbolic systems with source
terms. In a general conservative form

@u(x; t)
@t

+
dF(x; u)
dx

=H(x; u) (1)

where u is the vector of conserved variables, F the vector of �uxes and H the vector of source
terms. Our interest is led by the numerical modelling of one-dimensional shallow water �ows
of practical application in Hydraulics such as river �ows. In that case

u=

(
A

Q

)
; F=

(
Q

Q2

A + gI1

)
; H=

(
0

g[I2 + A(S0 − Sf)]
)

where Q is the discharge, A is the wetted cross-section, g is the acceleration of gravity and
S0 is the bed slope. The rest of the terms account for pressure forces and for friction forces,
with Sf associated to wall friction and represented by the empirical Manning law [8].
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IMPLICIT SCHEMES WITH LARGE TIME STEP 609

From the equations in conservative form (1), it is possible to pass to an associated non-
conservative form

@u(x; t)
@t

+ J(x; u)
@u(x; t)
@x

=H′(x; u) (2)

where J= @F=@u is the Jacobian matrix of the original system and H′=H−@F=@x. In shallow
water equations

H′ =

(
0

gA
(
S0 − Sf − dh

dx +
1
B
dA
dx

)
)
; J=

(
0 1

c2 − u2 2u

)

with h the depth, u=Q=A the �uid velocity, c=
√
gA=B the velocity of the in�nitesimal

surface waves and B the top width.
It is now convenient to develop the characteristic form of the equations given the importance

it has for the correct formulation of upwind schemes and boundary conditions. This form is
obtained from a diagonalization of the Jacobian in (2). Calling P and P−1 the matrices that
make J diagonal, and � the resulting diagonal matrix

J=P�P−1; �=P−1JP

The matrix � is formed by the eigenvalues of J, and P is constructed with its eigenvectors.
Let w be the set of variables (characteristic variables) that verify

du=P dw; dw=P−1 du

Then,

@w(x; t)
@t

+�(x;w)
@w(x; t)
@x

=P−1(x;w)H′(x;w) (3)

In the one-dimensional shallow water model, the above matrices are

P=

(
1 1

u+ c u− c

)
; �=

(
u+ c 0

0 u− c

)

3. CONSERVATIVE SCHEMES

The most common de�nition of a conservative scheme follows the structure [9]

�uni =�t
[
H∗
i − 1

�x
(F∗
i+1=2 − F∗

i−1=2)
]

(4)

where H∗ is the numerical source at cell i and F∗
i+1=2 is the numerical �ux at cell interface

i + 1=2. They represent a suitable approximation of the true source and �ux terms in the
equation. � will be used for time increment �fni =f

n+1
i − fni , and � represents spatial

increment �fi+1=2 =fni+1 − fni . Schemes so de�ned will be conservative since they cancel the
contributions of the �ux at the grid interfaces, being the global variation of the conserved
variable due only to the source terms and to the �uxes at the boundaries.
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A numerical �ux FTi can also be de�ned at the grid nodes [10]. The di�erence in this �ux
between two nodes can be decomposed into parts a�ecting the nodes on the left and right.
Schemes so built follow

�FTi+1=2 = F
T
i+1 − FTi = �FRi+1=2 + �FLi+1=2

�uni = �t
[
H∗
i − 1

�x
(�FRi+1=2 + �F

L
i−1=2)

] (5)

This also leads to conservative schemes since this form can be shown to be equivalent to
(4) [10].
In addition, and following evidences from previous works [10–13], we consider a non-

pointwise contribution of the source terms

HT
i+1=2 =H

R
i+1=2 +H

L
i+1=2

so that the following formulation for the conservative scheme is proposed:

�uni =�t

[(
H − �F

�x

)L
i−1=2

+
(
H − �F

�x

)R
i+1=2

]
(6)

Conservative schemes can also be derived from the non-conservative form of the equations
(2) [10]. The advantage is that the latter form tends to be simpler to deal with than the
conservative form. We need to establish the conditions under which schemes derived in this
way are equivalent to the conservative scheme (6) derived from the conservative equations.
First of all, the following equality must hold at the discrete level

Gi+1=2 ≡
(
H − �F

�x

)
i+1=2

=
(
H′ − J �u

�x

)
i+1=2

(7)

Note that this equality requires a non-pointwise treatment of source terms and is an extension
of the Roe’s average [14]. In shallow water this average is [13]

ũi+1=2 =
Qi+1=

√
Ai+1 +Qi=

√
Ai√

Ai+1 +
√
Ai

; c̃i+1=2 =

√
g
Ai+1=2
Bi+1=2

From (7) it follows that two equivalent forms of building conservative schemes with non-
pointwise source terms are possible [10]. De�ning G as

Gi+1=2 ≡
(
H − �F

�x

)
i+1=2

(8)

form (6) is achieved, whereas de�ning this term like

Gi+1=2 ≡
(
H′ − J �u

�x

)
i+1=2

(9)

with restriction (7), the non-conservative form of the conservative scheme is derived. In any
case

�uni =�t(G
L
i−1=2 +G

R
i+1=2) (10)
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IMPLICIT SCHEMES WITH LARGE TIME STEP 611

where the decomposition in left and right parts is to be de�ned according to every particular
numerical scheme.
Conservative schemes based in the characteristic form of the equations are the basis for the

wave decomposition of upwind schemes. From (3) it is possible to rewrite

@w
@t
=P−1

(
H′ − J @u

@x

)
=P−1G

Then, a discrete wave decomposition into left and right moving contributions can be done
[10]

(P−1G)i+1=2 = (�
LP−1G)i+1=2 + (�

RP−1G)i+1=2

being �L and �R diagonal matrices to be de�ned in every particular numerical scheme. In
order to ensure the conservative character of the scheme, they have to obey

(�L +�R)i+1=2 = I (11)

Multiplication by P gives the �nal form for the discretization in terms of the conserved
quantities

�uni =�t[(P�
LP−1G)i−1=2 + (P�

RP−1G)i+1=2] (12)

Note that this discretization requires again a non-pointwise formulation of the source terms,
being equally possible (8) or (9) for G. If a pointwise treatment of the source terms is desired,
the following can be made:

�uni =�t

[
H∗
i −

(
P�LP−1 �F

�x

)
i−1=2

−
(
P�RP−1 �F

�x

)
i+1=2

]
(13)

Both options can be inserted into the general form of the conservative schemes (10) and
(5) by de�nition of

GL;R =P�L;RP−1G; �FL;R =P�L;RP−1�F (14)

4. FIRST-ORDER IMPLICIT UPWIND SCHEMES

4.1. Tridiagonal scheme

Upwind schemes are based on the idea of approximating the spatial derivatives by non-centred
di�erences biased in the sense of propagation of information in the physical problem. In order
to construct a �rst-order scheme, suitable for left and right moving propagation velocities, the
following wave decomposition can be made:

FTi =F
n+�
i ; �FLi+1=2 = (�F

+)n+�i+1=2; �FRi+1=2 = (�F
−)n+�i+1=2

leading to

�uni =�t[(G
+)n+�i−1=2 + (G

−)n+�i+1=2] (15)
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where G−; �F− and J− are associated to negative velocities, and G+; �F+ and J+ to positive
velocities and the notation fn+�= �fn+1 + (1− �)fn is used. From (12), the following wave
decomposition is assumed for this scheme in order to select the appropriate in�uence region
in every case:

�L = �+ = 1
2 [I+�

−1|�|]; �R =�−= 1
2[I −�−1|�|]

J± = P�±P−1J; �F±=P�±P−1�F; G±=P�±P−1G
(16)

A linear analysis of the homogeneous equations shows that the stability condition is

(1− 2�)CFL61 (17)

with CFL= max |ak |�t=�x the CFL number and ak the eigenvalues of the Jacobian, being
unconditionally stable if �¿ 1

2 . This linear analysis also shows that the scheme is total variation
diminishing (TVD) if

CFL6
1

1− � (18)

being this condition more restrictive. The scheme is unconditionally TVD if �=1.
With non-linear equations this scheme requires to involve Fn+1 and Hn+1, which represents

a di�culty. In order to avoid this problem, the following linearization can be made

Fn+1≈Fn + @F
n

@t
�t≈Fn +

(
@F
@u
@u
@t

)n
�t≈Fn + Jn�un

Hn+1≈Hn +
@Hn

@t
�t≈Hn +

(
@H
@u

@u
@t

)n
�t≈Hn +Kn�un

with K= @H=@u the Jacobian of the source term. Using the wave decomposition (16), the
conservative scheme in characteristic form (12) can be expressed

�
�t
�x
(J−�u)ni+1 +

[
1− ��t

(
K − J+

�x
+
J−

�x

)]n
i
�uni − � �t

�x
(J+�u)ni−1

=�t[(G+)ni−1=2 − (G−)ni+1=2] (19)

with J±=P�±P−1J. It is worth noting that it is simpler to make the upwind treatment of the
source terms in the explicit operator keeping a pointwise discretization for K in the linearized
implicit operator.
The numerical scheme, as described in (15) or in the linearized version (19), is unable to

deal with transonic problems of the type subcritical to supercritical �ow, requiring in these
cases the introduction of an arti�cial viscosity like the one proposed by Harten–Hyman [15].
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IMPLICIT SCHEMES WITH LARGE TIME STEP 613

In the linearized case, the wave decomposition is

FTi = F
n
i + �(J�u)

n
i

�FLi+1=2 = (�F
+)ni+1=2 + ��(J

+�u)ni+1=2 − (��u)ni+1=2
�FRi+1=2 = (�F

−)ni+1=2 + ��(J
−�u)ni+1=2 + (��u)

n
i+1=2

where we propose to use the following:

�ni+1=2 =maxk
(�k)ni+1=2 (20)

with

(�k)ni+1=2 =

{ 1
4 [�(a

k)ni+1=2 − 2|ak |ni+1=2] if (ak)ni ¡0 and (a
k)ni+1¿0

0 otherwise
(21)

Therefore, the quantities G± will be rede�ned to cope with the mentioned transitions as

(G±)ni+1=2 =
(
P�±P−1G ± � �u

�x

)n
i+1=2

(22)

This linearized implicit scheme was developed by Yee [7] in the context of gas dynamics
and successfully used for steady problems. The performance for steady problems is highly
sensitive to the CFL used during the transient phase. When shocks are present in the solution
of a non-linear equation and a high time step is used, the propagation velocities (eigenvalues
in the system case) can change strongly between the two time levels. The implicit linearized
methods are not unconditionally stable in these cases because the linearization involves the
evaluation of the Jacobian at time level n. In the references the test cases presented con�rm
this behaviour.

4.2. Bidiagonal scheme

The scheme built as in (19) leads, in general, to a linear block tridiagonal system of equations.
In order to work with a simpler block bidiagonal system and to avoid spurious errors in
the transcritical points, the original scheme (19) can be altered. We propose the following
modi�cation by splitting the increments due to positive and negative propagations

FTi = F
n
i + �(J

+�u+ + J−�u−)ni

�FLi+1=2 = (�F
+)ni+1=2 + ��(J

+�u+)ni+1=2

�FRi+1=2 = (�F
−)ni+1=2 + ��(J

−�u)ni+1=2
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614 J. BURGUETE AND P. GARC�IA-NAVARRO

and the original scheme is transformed in a two-step block bidiagonal system:[
1− � �t

�x
(J−)

]n
i
(�u−)ni + �

�t
�x
(J−�u−)ni+1 = �t(G

−)ni+1=2[
1 + �

�t
�x
(J+)

]n
i
(�u+)ni − � �t

�x
(J+�u+)ni−1 = �t(G

+)ni−1=2

(1− ��tKni )�uni = (�u+ +�u−)ni

(23)

When dealing with scalar equations with no source terms, this discretization is always identical
to the classical tridiagonal scheme except for transcritical points. Hence, the stability (17) and
TVD (18) conditions, deduced for linear cases, are equally valid for this scheme.
Despite the improvement achieved by the splitting phylosophy in transcritical �ow points,

this scheme is still not able to cope with high CFL numbers in presence of moving shocks.

5. SEMI-EXPLICIT NDA FIRST-ORDER UPWIND SCHEME

In a di�erent approach, scheme (23) can be improved by means of a locally de�ned spatial
weighting parameter. A wave decomposition like

FTi = F
n
i +

�x
�t
(�+�u+ − �−�u−)ni

�FLi+1=2 = (�F
+)ni+1=2 +

�x
�t
�(�+�u+)ni+1=2

�FRi+1=2 = (�F
−)ni+1=2 +

�x
�t
�(�−�u−)ni+1=2

produces the following numerical scheme:

(1 + �−)ni (�u
−)ni − (�−)ni+1(�u

−)ni+1 = �t(G
−)ni+1=2

(1 + �+)ni (�u
+)ni − (�+)ni−1(�u+)ni−1 = �t(G+)ni−1=2

(1− ��tKni )�uni = (�u+ +�u−)ni

(24)

It is worth noting that this de�nition of the parameters � modi�es the wave decomposition
of the implicit operator in a manner very similar to the introduction of the arti�cial viscosity
applied in the explicit operator to correct the sub-super transitions. This suggests that the
physical meaning of these parameters is analogous and that the �’s represent an implicit
arti�cial viscosity.
From a non-linear analysis based on a scalar equation, as described in Appendix B, it is

easy to deduce that conditions (B2) and (B3) leading to an NDA scheme can be written as
follows for the present scheme:

�±
i ¿ ±�t

�x
a±
i∓ 1
2

− 1

�±
i ¿ �±

i∓1 − 1
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IMPLICIT SCHEMES WITH LARGE TIME STEP 615

From these conditions, the set of parameters � will be calculated as

�±
i = max

[
± �t
�x
a±
i∓ 1
2

− 1; �±
i∓1 − 1; 0

]
(25)

In those cases of transition from subcritical to supercritical �ow, an arti�cial viscosity needs
also to be included and (22) must be applied. It can be easily veri�ed through a detailed non-
linear NDA analysis like the one discussed in Appendix B, that the arti�cial viscosity de�ned
like in (21) also modi�es condition (B2) in the following way:

�+i ¿
�t
�x
a+i − 1

�−
i ¿ − �t

�x
a−
i − 1

Therefore, in these cases the parameters � should be de�ned as

�+i = max
[
�t
�x
a+i − 1; �+i−1 − 1; 0

]

�−
i = max

[
−�t
�x
a−
i − 1; �−

i+1 − 1; 0
] (26)

6. BOUNDARY CONDITIONS

The theory of characteristics supplies a rigorous rule for the numerical treatment of the
boundary conditions at the upstream and downstream ends. In case of subcritical �ow, at
every boundary one external or physical boundary condition is required and the numerical
scheme must provide another one. On the other hand, if the �ow is supercritical, two external
boundary conditions need to be imposed at the inlet (upstream) whereas the numerical scheme
will provide two numerical boundary conditions at the outlet (downstream) [9, 16].
The method of global conservation proposed here is based on a very important physical

principle: the increment of mass in the whole system in a time interval is the result of the
entering mass �ow minus the leaving mass �ow during that period of time. When using a
conservative numerical scheme, this physical principle provides a way to reach two objec-
tives, �rst to allow for a null mass balance error and, second, to supply numerical boundary
conditions.
In a �rst step, the numerical solution u∗

i is obtained assuming derivatives to be nil at
the boundaries. This step involves a numerical (positive or negative) error in the global mass
which must be compensated with the global error induced by the physical boundary conditions
in order to achieve the global mass conservation in our system [17, 18]. In total, from the
mathematical point of view, the external boundary conditions and the requirement of global
mass conservation supply enough equations to obtain the solution un+1i leading to conservative
solutions up to machine accuracy.
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Let us assume a problem discretized by means of N cells:

M =
N∑
i= 1
Ai�x (27)

so that the total mass increment in one time step �Mn is

�Mn=
N∑
i= 1
�Ani �x (28)

Suppose we are using a conservative scheme for the interior points with nodal �ux as
in (10):

�u∗
i =�t(G

L
i−1=2 +G

R
i+1=2) (29)

although the method is also valid with nodal source term. The assumption of zero derivatives
at the boundaries leads to

GR
N+1=2 =G

L
1=2 = 0; u∗

1 = u
n
1 + �tG

R
3=2; u∗

N = u
n
N +�tG

L
N−1=2 (30)

The wetted cross-section increments at every node in that time step are

�A∗
i = − �t

�x
(�QRi+1=2 + �Q

L
i−1=2) (31)

with

�QRi+1=2 + �Q
L
i+1=2 =Q

T
i+1 −QTi (32)

Using (28) the numerical mass variation produced by the scheme is therefore:

�M ∗= −�t
N∑
i=1
(�QLi−1=2 + �Q

R
i+1=2) (33)

Applying (30) and rearranging indexes, the mass variation is

�M ∗=�t(QT1 −QTN ) (34)

It comes from the approximation at the boundaries and can be split into numerical mass errors
at the inlet �M ∗

in and at the outlet �M
∗
out as follows:

�M ∗
in =�tQ

T
1 ; �M ∗

out = −�tQTN (35)

In order to ensure stability when using implicit schemes, perturbations such as those intro-
duced at the boundaries must be allowed to propagate all over the domain. Using a formulation
based on the upwind semi-explicit bidiagonal scheme described in 5, can be written as follows:

�u+i =
(

�
1 + �

)i−1
�ua1

�u−
i =

(
�

1 + �

)N−i
�uaN

�uni = �u
∗
i +�u

a
i =�u

∗
i +�u

+
i +�u

−
i

(36)
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being �uai the propagated modi�cations so that using (28) and the formula of the sum of the
terms in a geometric progression, the mass variations at the inlet and outlet are

�Ma
in = �x

N∑
i= 1
�A+i = ��A

a
1�x

�Ma
out = �x

N∑
i= 1
�A−

i = ��A
a
N�x

(37)

with

�=(1 + �)

[
1−

(
�

1 + �

)N]
(38)

where one of the simplest and best options for parameter � is

�= max(CFL− 1; 0) (39)

When the physical boundary conditions imply a real mass increment at the inlet �Mn
in or at

the outlet �Mn
out, the application of (37) ensures the global mass conservation in the system:

�Mn
in =�M

∗
in + �M

a
in = ��A

a
1�x +�tQ

T
1

�Mn
out =�M

∗
out + �M

a
out = ��A

a
N�x −�tQTN

(40)

These two equations together with (36) are the basis of the method which will be clari�ed
next with some examples.

6.1. Q=Q(t) at the boundary

When a discharge hydrograph is known at the inlet point, the physical upstream variation is

�Mn
in =

∫ t n+1

t n
Q(t) dt (41)

hence �Qn1 and �Q
a
1 are known. Using (40):

�Aa1 =
�Mn

in −�tQT1
��x

(42)

where it is also necessary to apply (36). The equivalent at the outlet in the case of a known
out�ow discharge and therefore �Qa

N and �M
n
out, is

�AaN =
�Mn

out + �tQ
T
N

��x
(43)

6.2. Q=Q(h) at the boundary

In some hydraulic problems, a dynamic stage-discharge Q=Q(h) has to be enforced as ex-
ternal boundary condition. This gives rise to a system of equations that may become di�cult
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to solve depending on the form of this function. The approximation

Qn+1 ≈Q(hn)

simpli�es the calculation which is then treated as described in the previous subsection.

6.3. h= h(t) at the boundary

When a water level hydrograph or limnigraph is imposed as external boundary condition,
either �An1 and �A

a
1 at the entrance or �A

n
N and �A

a
N at the outlet are known. The physical

mass variation can be approximated via a second-order trapezoidal rule as

�Mn
in =

Qn1 +Q
n+1
1

2
�t=

(
Qn1 +

1
2
�Qn1

)
�t

�Mn
out = −Q

n
N +Q

n+1
N

2
�t=−

(
QnN +

1
2
�QnN

)
�t

(44)

From (40) we can get

�Qn1 = 2
(
QT1 −Qn1 + �

�x
�t
�Aa1

)
(45)

having enforced (36). In the same form, at the outlet, if the water depth and therefore �AaN
are known, it is possible to estimate

�QnN =2
(
QTN −QnN − � �x

�t
�AaN

)
(46)

7. NUMERICAL RESULTS

7.1. Burgers’ equation

The inviscid Burgers’ equation [19]

@u
@t
+
@
@x

(
u2

2

)
=0

is used to compare the performance of the various implicit upwind schemes in a simple non-
linear and homogeneous scalar hyperbolic case with shock. The analytical solutions to this
problem can be found in Reference [9].

7.1.1. Unsteady case. For the purpose of having an unsteady solution, initial conditions for
the function u are chosen discontinuous and transcritical as depicted in Figure 1. The results
from the simulation at time t=20 on a uniform grid with 400 cells are presented and compared
with the exact solution in Figures 2 and 3. Both the tridiagonal and bidiagonal schemes can
be seen to be unstable from CFL=10. On the other hand, the semi-explicit NDA scheme
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Figure 1. Initial conditions and exact solution for the unsteady Burgers’ test case.
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Figure 2. Analytical and numerical solution of the initial square shape using the tridiagonal scheme:
(a) CFL=0:5; (b) CFL=4; and (c) CFL=10.

remains unconditionally stable. In Figure 3(f), the numerical solution obtained with the NDA
semi-explicit scheme using a CFL=100 is not smooth; on the contrary, it presents a pro�le
made of jumps that has been produced in only two time steps. In order to verify the sensitivity
of the method to the grid re�nement as well as the evolution of the shape of the numerical
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Figure 3. Analytical and numerical solution of the initial square shape using the bidiagonal scheme
(a, c, e) and the NDA semi-explicit scheme (b, d, f).

solution, Figure 4 shows the results of the same problem on a �ner grid at times t=8
and 20.

7.1.2. Convergence to steady state. The initial conditions shown in Figure 5 have been
selected to illustrate that, although the NDA implicit method is able to simulate the un-
steady discontinuity solution of a non-linear problem using high CFL number, it may spoil
the quality of a discontinuous transcritical steady solution due to an excessive numerical dif-
fusion which grows with the CFL number. This is displayed on Figure 6, where the better
performance of the bidiagonal implicit scheme for steady solutions is clear. The reason for
this behaviour is that the NDA method promotes the passage of information from non-physical
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Figure 4. Analytical and numerical solution of the unsteady Burgers’ case using the NDA semi-explicit
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Figure 10. MacDonald 1 test case: (a) Initial and steady water depth pro�les; (b) initial and steady
discharge pro�les; (c) water surface and channel bed pro�les; and (d) channel cross-section.

regions of in�uence across the discontinuity. This is linked to the stabilizing tendency of this
method and does not produce oscillatory results.

7.2. Shallow water equations: ideal dam break

The unsteady �ow induced by an ideal dam break is the most widely used test case for
numerical schemes of the kind considered here. The initial conditions de�ning this non-linear
problem, as well as the exact solution are plotted in Figure 7. Implicit methods are particularly
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Figure 11. Numerical results of water depth and convergence error for the MacDonald 1 test case using
the implicit bidiagonal scheme and CFL=1; 10; 100.

a�ected by the discontinuous character of the initial conditions and are usually reported to
fail for most applications using CFL values above 3 or 4. In the example presented here an
initial depth ratio of 100 was used. The numerical solutions are displayed for comparison in
Figure 8 together with the exact solution [20]. Figures 8(a) and (c) show the solution
obtained with the bidiagonal implicit method using CFL=1 and 2, respectively. The stability
limit in this case for this scheme is shown in Figure 8(e) after one time step of calcula-
tion (approximately corresponding to CFL=6). The oscillation shown makes a second time
step impossible. On the contrary, Figures 8(b), (d) and (f) show the stability of the solution
provided by the NDA semi-explicit scheme even using CFL=100. It is worth to note that
the solution is even more accurate at low CFL values in this case than using the bidiagonal
implicit. The stability of the NDA scheme with CFL=100 contrasts again with the strange

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:607–636



IMPLICIT SCHEMES WITH LARGE TIME STEP 625

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 20 40 60 80 100 120 140

D
ep

th
 (

m
)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

D
ep

th
 (

m
)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

D
ep

th
 (

m
)

x (m)

0 20 40 60 80 100 120 140
x (m)

0 20 40 60 80 100 120 140
x (m)

cfl = 1 cfl = 1

cfl = 10 cfl = 10

cfl = 100 cfl = 100

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

10 100 1000 10000 100000

E
rr

or

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

E
rr

or

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

E
rr

or

Iterations number

10 100 1000 10000 100000

Iterations number

10 100 1000 10000 100000

Iterations number

(a) (b)

(c) (d)

(e) (f)

Figure 12. Numerical results of water depth and convergence error for the MacDonald 1 test case using
the NDA semi-explicit scheme and CFL=1; 10; 100.

shape of the solution at the �rst time steps. Figure 8(f) is the plot of the unsteady solution
obtained in only a pair of time steps starting from discontinuous initial conditions. In order
to follow how this solution evolves in time, Figure 9 shows the water depth at times t=60
and 150 s in a longer domain.

7.3. Steady-state test cases

MacDonald et al. [21] supplied a set of realistic steady open channel �ow test cases with
analytical solution very well suited to validate the convergence of time-stepping schemes. Two
examples from Reference [22] are used here. They both apply a Manning friction parameter
n=0:03 and have been simulated using 400 cells. In the �rst example the �ow of discharge
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Figure 13. MacDonald 2 test case: (a) Initial and steady water depth pro�les; (b) initial and steady
discharge pro�les; (c) water surface and channel bed pro�les; and (d) channel cross-section.

Q=20 m3=s is subcritical all along the 10 m wide (B=10 m) rectangular channel shown
in Figure 10 where the bed slope variation as well as the initial conditions used are also
displayed. The steady-state water depth and bed slope analytical functions are [22]:

h(x) = 0:8 + 0:25 exp

(
−33:75

(
x
150

− 1
2

)2)

S0(x) =
(
1− Q2

9:08665(h(x))3B2

)
h′(x) +

Q2n2(B+ 2h(x))4=3

(Bh(x))10=3

The performance of the discussed implicit schemes is displayed in Figures 11 and 12
by means of the numerical water depth versus the analytical solution and corresponding
convergence to steady-state error using CFL=1; 10 and 100. The way to evaluate the con-
vergence from initial to steady state was the mean quadratic error in discharge de�ned as

E=
1
N

√√√√∑N
i=1 [Q

n
i −Q(xi)]2∑N

i=1 [Q(xi)]2
(47)

being N the number of nodes and Q(xi) the analytical steady discharge at node i. In order
to compare the two methods in a case with steady discontinuities, the MacDonald 2 test case
was used. Its main features are graphically described in Figure 13. The numerical results using
CFL=1 can be seen in Figure 14 as computed with the implicit bidiagonal. Both schemes
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Figure 14. MacDonald 2 test case using bidiagonal implicit scheme with CFL=1: (a) water depth
pro�le; (b) discharge pro�le; and (c) convergence.

supply the same solution at this CFL number where the most noticeable is the local errors in
discharge at the transcritical points. This can be seen in Figure 14. At higher CFL numbers
there are more di�erences between the two solutions. Figure 15 shows the solution from the
bidiagonal implicit using CFL=10 and 25. The steady solution is very accurate in this case
but CFL=25 was the upper limit for the time step size compatible with stability. On the other
hand, the results shown in Figure 16 indicate that there is not a stability limit when using
the NDA semi-explicit and that a numerical di�usion, specially noticeable in the discharge
plot Figure 16(c), appears due to the transcritical discontinuity and grows with the size of the
time step. The solution is mass conservative in both cases, however, until the di�usion error
interferes with the boundaries as in Figure 16(b,d).

7.4. Shallow water equations: �ood wave in a river

The river reach used for the simulation belongs to the lower part of the Ebro river and
therefore has very mild average slope and low water velocities. The river cross-section is
highly variable in shape along the axis of the river and presents an irregular tendency in the
bottom level variation leading to adverse and important slopes in some parts.
The total length of the simulated reach is around 11 400 m. Geometric data were available

at 49 cross-sections. The Manning coe�cient was assumed uniform and equal to 0.03.
A �rst run supplied the initial condition for the �ooding simulation. This �rst run started

from dry bed and introduced an upstream constant discharge of Q=200 m3=s until conver-
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Figure 15. MacDonald 2 test case. Bidiagonal implicit scheme.

gence. Unsteady shallow water �ow over dry beds is at present one of the topics of research in
computational hydraulics. Our approach consists of a through calculation of the front position
as it advances over a computational mesh covering all the physical domain and in which there
are both wet and dry cells. The set of equations we are solving are written in terms of wetted
cross-section size and average velocity. The information concerning the original velocity pro-
�le is therefore reduced to a friction source term which takes into account the wall tangential
stress and other viscous e�ects. This is usually modelled by means of a Manning-type formula
which actually derives from the viscous nature of the velocity pro�le. In nature, rivers and
streams do not have a regular bottom roughness, but the bed consists of unsorted sand, gravel
and rocks. In cases of �ow advance over dry bed, the �ow resistance is mainly due to form
drag and energy dissipation more than skin friction. Neither Chezy nor Manning formulae are
adequate to estimate the friction losses and experimental investigations should be performed
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Figure 16. MacDonald 2 test case. NDA semi-implicit scheme.

beforehand. Owing to the impossibility of carrying out such �eld experiments in most cases a
compromise is required. The option chosen in this work is based on the empirical correlation
proposed by Strickler in 1923 for the Manning coe�cient in rivers

n=0:041d1=650

Given an estimation for the global or local Manning coe�cient, the above relation supplies
the order of magnitude of d50. In our model, this value is used as the minimum water depth
required at the front position to allow front advance. For water depths below that value, water
is forced to stop and accumulate.
Using the converged steady state as initial condition, the �ood was represented by means of

an upstream hydrograph, used as upstream boundary condition. The shape of this hydrograph
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Figure 17. Water surface and discharge pro�les at best �ow (t=0); t=6; 12h (peak in�ow) and t=18h
using (a, b) CFL=1 (c, d), CFL=10 and (e, f) CFL=100 from the NDA scheme.

was simpli�ed making it triangular and only the peak discharge, Q=5300m3=s, corresponded
to the estimated maximum discharge for the �ood event of return period equal to 500 years.
The downstream boundary condition was set to critical �ow in all cases.
From the numerical point of view, 400 nodal values were used and di�erent values for

the CFL number. Figure 17 shows the results obtained with the NDA semi-explicit scheme
and CFL=1; 10 and 100, leading to CPU times of around 90, 10 and 2 s, respectively, for
the 36 h simulated event on a 1 GHz Pentium III PC. For the sake of comparison in this
real test case, the same simulation was performed with the explicit �rst-order upwind and the
bidiagonal implicit upwind schemes. The results are presented in Figure 18 using CFL=1
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Figure 18. Water surface and discharge pro�les at base �ow (t=0); t=6; 12h (peak in�ow)
and t=18 h using (a, b) Roe’s �rst-order explicit scheme with CFL=1 and (c, d) the

bidiagonal implicit scheme with CFL=5.

(CPU time=90 s) for the explicit scheme and CFL=5 (CPU time=10 s) for the bidiagonal
implicit. Higher values of the CFL number were not possible for stable solutions using the
bidiagonal scheme. The tridiagonal scheme is not even ready to compute �ow on irregular
geometries given its poor performance on idealized test cases.
The water depth and discharge pro�les plotted and displayed correspond to the hypothesis

of vertical walls at the left and right points of every supplied cross-section, that is, no lateral
water loses are assumed. A control over the global volume conservation of the numerical
results gives accuracy to machine precision in all cases. The results are remarkably similar
and almost independent of the CFL (time step) used in this transient �ow problem.

8. CONCLUSIONS

Conservative implicit methods belonging to the family of linearized upwind schemes have been
presented. They are in general suitable for the numerical treatment of a variety of hydraulic
problems. Among them, the basic linearized scheme is restricted to low CFL values for the
simulation of unsteady transcritical �ow with shocks. Two modi�cations of this scheme have
been derived introducing the idea of splitting the scheme in a superposition of negative and
positive wave in�uences: a bidiagonal implicit and a semi-explicit scheme.
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The performance of the implicit schemes has been tested in two solutions of the Burgers’
equation, in a dam-break problem arising from the shallow water equations, in two steady
open channel �ow problems and in a transient river �ow example.
Both the bidiagonal implicit and the semi-explicit schemes are able to handle unsteady

problems involving transcritical shocks. However, only the NDA semi-explicit can handle
these problems with no stability restriction on the CFL at the cost of a numerical di�usion
across the transcritical point that grows, in steady state, with the size of the time step. The
reduction of the excess of di�usion keeping the unconditional stability is envisaged as further
research work.
The conservative character of the schemes can get spoiled if the discretization at the bound-

aries is not treated with care. A technique that combines the external boundary conditions with
the requirement of global mass conservation has been described, leading to conservative so-
lutions up to machine accuracy.

APPENDIX A: STABILITY AND TOTAL VARIATION DIMINISHING PROPERTY

For a given linear advection equation

@u
@t
+ a

@u
@x
=0

a general three-point implicit scheme adopts the following form:

un+1i + A(�un+1i+1=2 + �u
n+1
i−1=2) + B(�u

n+1
i+1=2 − �un+1i−1=2)

= uni + C(�u
n
i+1=2 + �u

n
i−1=2) +D(�u

n
i+1=2 − �uni−1=2) (A1)

The ampli�cation factor G of any time-stepping scheme is de�ned as

G=
un+1i

uni
(A2)

In the general three-point scheme (A1), for every Fourier component eikx, the ampli�cation
factor is

G=
1+ 4iC sin � cos �− 4D sin2 �
1 + 4iA sin � cos �− 4B sin2 � (A3)

with �= 1
2 k�x. A numerical scheme is stable for linear equations provided that

|G(�)|61 (A4)

Applying the inequality to (A1), the following conditions apply

2C2 −D62A2 − B; 2D2 −D62B2 − B (A5)
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A stronger restriction over the numerical solution is the property of TVD [9], de�ned to
avoid any numerical oscillation in the solution. The total variation is de�ned as

TVn=
∑
i

|�uni+1=2| (A6)

and a scheme is said to be TVD whenever

TVn+16TVn (A7)

The su�cient (although not necessary) conditions ensuring that a centred three-point scheme
as in (A1) applied to the scalar linear equation are [9]

B6− |A|; 1
2¿D¿|C| (A8)

APPENDIX B: SPECIAL STABILITY CONDITIONS FOR IMPLICIT METHODS

Traditional techniques to deduce the stability or TVD conditions for a numerical scheme are
usually based on a linear analysis, as stated before, and can prove insu�cient and therefore
unable to produce unconditionally stable methods in presence of discontinuous solutions to
non-linear equations. An example of this kind of behaviour is shown in Figure B1, where
the numerical and exact solutions to the inviscid Burgers’ equation are plotted together. They
correspond to the initial condition (t=0) and subsequent propagation (t=40 and 80) of a
shock-type solution as computed using the previously presented tridiagonal �rst-order upwind
scheme with �=1 and CFL=4. It can be observed that the solution is far from the uncon-
ditional TVD property.
In a search for numerical schemes well behaved in these cases, a new stability condi-

tion based on the non-ampli�cation of discontinuities will be introduced next. A numerical
scheme will be said to be NDA if the amplitude of the discontinuities present in homogeneous

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80

u

x

t = 80
t = 40

Figure B1. Numerical solution of a shock-type problem based on the Burgers’ equation using the basic
tridiagonal �rst-order upwind scheme (CFL=4; �=1 and �x=1).
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Figure B2. Initial conditions for a discontinuity propagation with a non-linear equation.

non-linear scalar equations does not grow in time due to the numerical propagation. Therefore,
given a non-linear scalar equation like

@u
@t
+ a(u)

@u
@x
=0 (B1)

and discontinuous initial conditions as represented in Figure B2, we will study which condi-
tions can guarantee that a given numerical scheme does not amplify the initial step.
It must be noted here that the limitation we want to impose may introduce some error in

the discontinuity propagations since, in some cases, the spatial variation of the propagation
velocity should require an increase on the discontinuity amplitude. However, we accept such
error as necessary to ensure stability for the implicit methods in these cases using high values
of the CFL number with non-linear equations.
It is possible to deduce the NDA conditions for the bidiagonal version of the �rst-order

upwind implicit scheme. Let us assume, for the sake of simplicity, that the advection velocity
is positive. Then for an equation like (B1), the bidiagonal scheme gives[(

1 + �
�t
�x
a+
)
�u
]n
i
= �

�t
�x
(a+�u)ni−1 − �t

�x
(a+�u)ni−1=2

With reference to Figure B2, assumed as the front position at time t= n�t, the following can
be stated:
For all points i6j, the step front has left, behind a uniform and constant state ui= umax,

hence,

�uni = �u
n
i−1=2 = 0

When i= j + 1; �unj =0, and[(
1 + �

�t
�x
a+
)
�u
]n
j+1
= − �t

�x
(a+�u)nj+1=2

Using this result, it is not di�cult to �nd that the NDA condition, formulated as

|�unj+1|6|�unj+1=2|
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leads to the following:

1 + �
�t
�x
(a+)ni ¿

�t
�x
(a+)ni−1=2 (B2)

On the other hand, for all points i¿j+1, and time t= n�t, there is a uniform state ui= umin,
therefore

�uni−1=2 = 0[(
1 + �

�t
�x
a+
)
�u
]n
i
= �

�t
�x
(a+�u)ni−1

Requiring, for the NDA behaviour, that

|�uni |6|�uni−1|
and leading to the additional condition

1 + �
�t
�x
(a+)ni¿�

�t
�x
(a+)ni−1 (B3)

In the worst case, with ai=0; ai−1 = amax; ai−1=2 = 1
2 amax, condition (B2) indicates that the

jump’s amplitude will grow whenever the following holds:

1¿ 1
2 CFL

and, therefore, the implicit upwind scheme applied to non-linear equations is only stable in
presence of strong discontinuities for time steps such that CFL62.
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