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SUMMARY

Friction is one of the relevant forces included in the momentum equation of the 1D shallow-water model.
This work shows that a pointwise discretization of the friction term unbalances this term with the rest of
the terms in the equation in steady state. On the other hand, an upwind discretization of the friction term
ensures the correct discrete balance. Furthermore, a conservative technique based on the limitation of the
friction value is proposed in order to avoid unbounded values of the friction term in unsteady cases of
advancing front over dry and rough surfaces. This limitation improves the quality of unsteady solutions in
wet/dry fronts and guarantees the numerical stability in cases with dominant friction terms. The proposed
discretization is validated in some test cases with analytical solution or with measured data and used in
some practical cases. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The 1D shallow-water model involves cross-sectional averaging of the original flow equations.
One of the main consequences of such cross-sectional averaging is that the viscous flow boundary
condition at solid walls and bottom is transformed into a drag/friction force source term. The
form of this friction force term is closely related to the assumed velocity profile and therefore
to the underlying turbulence model. To model friction, empirical or semi-empirical methods have
traditionally been applied [1–3]. They are all dependent on the surface roughness as well as on
the flow characteristics, and their coefficients can be found in a tabular form in many references,
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for instance, [4]. Several authors have reported theoretical studies devoted to model the friction
force based on velocity profiles [5, 6].

The main objective of this work is related to the study of the best way of incorporating the
friction forces into numerical simulation models of steady and unsteady flow and to the evaluation
of the interaction between a dominant friction term in the equations and the stability constraints
within a model at the discrete level. Few previous works have treated in detail the consequences
of the discretization of the friction term. The most commonly reported procedure [7, 8] is the
pointwise discretization of the term independent of the methodology used for the rest of the system,
for simplicity reasons. A unified discretization of all the source terms was suggested previously
[9, 10] over the basis of the widely reported convenience of using an upwind discretization for
the bed slope source terms in the context of upwind schemes [11, 12]. The unified discretization
also applied to the friction source terms is considered in detail in this work, and the ability to
produce conservative solutions is evaluated in the case of steady open channel flow with analytical
solution.

Numerical stability constraints of explicit schemes for the 1D shallow-water equations are
basically derived from the homogeneous system of equations, leading to the well-known Courant–
Friedrichs–Lewy (CFL) condition [13]. It has been previously reported that this constraint over
the time step is not enough to guarantee stability in cases of high relative roughness, that is, in the
presence of important roughness values and low water depth. The usual cure is to reduce the time
step over the minimum value given by the CFL condition or to apply an implicit treatment of the
pointwise discretized friction source term. A new stability condition related to the friction term
and leading to a new requirement on the spatial grid size was derived in [6] based on the physical
idea that, in front advance over dry bed, friction can, at most, stop the water front movement
but never produce a change of sign in the water velocity. That approach is correct but can result
in excessively fine grids to achieve stability, hence resulting in inefficient calculations. Following
that line of reasoning, it can also be considered that the maximum allowable value of the friction
force is, which is able to prevent the water movement. This can be considered an obvious physical
condition, but present day models of the friction term usually violate this principle at the discrete
level. In this work, we explore a numerical limitation of the friction value in order to bound
within physical limits the friction force making sure, at the same time, that the scheme remains
conservative, stable and efficient.

Finally, the optimal discretization of the friction term will be inserted in a second-order TVD
scheme and this will be applied to practical cases. First, it is applied to a dam break flow problem in
a reach of a mountain river and second to a couple of test cases of unsteady flow with experimental
data, one dealing with a tsunami propagation physical model and the other dealing with the advance
of a surface irrigation flow.

2. BASIC EQUATIONS

The 1D open channel flow can be modelled using the Saint-Venant equations [14]. The conservative
form of these equations can be expressed in vector form as

�u
�t

+ �Fc

�x
=Hc (1)
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with u the conserved variable, and Fc and Hc the conservative flux and source terms, respectively,

u=
(
A

Q

)
, Fc=

⎛
⎜⎝

Q

�Q2

A
+gI1

⎞
⎟⎠ , Hc=

(
0

g (I2+AS0)−T

)
(2)

where A is the wetted cross section, Q the discharge, g the gravitational acceleration, S0 the main
bed slope, T the friction stress over the solid surface in the channel reach and � a coefficient that
appears as a result of the assumption of variable velocity in the cross section:

�= A

Q2

∫
A
v2x dA (3)

with vx =vx (x, y, z, t) the x component of the local point flow velocity, and I1, I2 the pressure
forces:

I1=
∫ H

0
�(x, z′′)(H−z′′)dz′′, I2=

∫ H

0

��(x, z′′)
�x

(H−z′′)dz′′ (4)

with H the maximum water depth at the cross section and � the section width at a level z′′ with
reference to the minimum bottom level zb (see Figure 1).

The flux Jacobian is

J= �Fc

�u
=
(

0 1

c2−�u2 2�u

)
(5)

with u=Q/A the average flow velocity and c=√
gA/B the celerity of the infinitesimal waves,

where B is the cross-sectional top width. The eigenvalues of this Jacobian are

�1=�u+
√

(�2−�)u2+c2, �2=�u−
√

(�2−�)u2+c2 (6)

The matrices that make this Jacobian diagonal are

P=
(
1 1

�1 �2

)
, K=

(
�1 0

0 �2

)
, J=PKP−1 (7)

Figure 1. Coordinate system in a cross section.
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The Jacobian of the source term is

K= �Hc

�u
=
⎛
⎜⎝

0 0

−g

(
�zs
�x

− 1

B

�A
�x

)
− �T

�A
− �T

�Q

⎞
⎟⎠ (8)

where zs is the water surface level.
A last, simple and very convenient form of the equations is the quasi-conservative form. Taking

into account that

�I1
�x

= I2+A
�zs
�x

(9)

and substituting it into (2) we have

�u
�t

+ �Fqc

�x
=Hqc (10)

where Fqc and Hqc are the quasi-conservative flux and source terms, which are given by

Fqc=
⎛
⎜⎝

Q

�Q2

A

⎞
⎟⎠ , Hqc=

⎛
⎜⎝

0

−gA
�zs
�x

−T

⎞
⎟⎠ (11)

3. FRICTION MODELS

3.1. Gauckler–Manning friction model

In the empirical Gauckler–Manning model, the friction slope Sf can be expressed as [2, 3]

Sf= T

gA
= n2|Q|Q

R4/3
(12)

where R= A/P is the hydraulic radius, P the wetted perimeter and n the Gauckler–Manning
coefficient. This model is valid only in cases of uniform flow velocity distribution in a cross
section. A kinematic friction stress � at a point in this model can be defined as

�dP=ghSf dy=gn2|U |Uh−1/3 dy (13)

where h=H−z′ is the local water depth, z′ the local bottom level with respect to the minimum
bottom level in the cross section (see Figure 1), U the depth-averaged water velocity and y
the transversal coordinate. In irregular sections or compound channels, the velocity cannot be
considered uniform in a cross section. In these cases, a constant slope model can be used [6].
Working out the averaged velocity from the last expression:

U = ±√|Sf|h2/3
n

(14)
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Furthermore, if the friction slope is constant in a section

Q=
∫
A
Uh dy=±√|Sf|

∫
A

h5/3

n
dy (15)

then,

Sf= |Q|Q(∫
A
h5/3

n
dy

)2
(16)

This model also enables an estimate of the cross-sectional momentum distribution � parameter:

�= A
∫
AU

2h dy

Q2
= ASf

|Q|Q
∫
A

h7/3

n2
dy (17)

3.2. Power law velocity model

A power law velocity model was proposed in [6] where it proved more accurate than the Gauckler–
Manning model in high relative roughness situations. This model assumes that the bed irregularities
are of average size l and that, in smooth channels, l can be identified with the laminar sublayer
thickness. Furthermore, this model assumes that the velocity profile can be fit by means of a power
function in the roughness upper zone, being negligible in the lower zone:

vx (x, y, z, t)=ul(x, y, t)

(
�

l

)b

if ��l (18)

where �= z−zb−z′ is the vertical distance to the bottom level, b is a fitting exponent and ul(x, y, t)
is the water velocity at a distance l of the bed, as represented in Figure 2. Integration in the vertical
coordinate leads to

hU =
∫ h

0
vx d�= ul

b+1

(
h1+b

lb
−l

)
(19)

Figure 2. Power function fitting the velocity profile.
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If the flow can be considered fully turbulent, as it happens in most channel and river flow situations,
the friction stress can be expressed as [6]

�dP≈�|ul |ul dy= �(b+1)2|U |U[(
h

l

)b

− l

h

]2 dy if h>l (20)

where � is dimensionless aerodynamic constant depending on the roughness characteristics and on
the Reynolds number. This friction law is valid only for h>l. If h<l, a zero velocity condition is
imposed for numerical stabilization of the advance over dry bed. Working out the friction slope:

Sf= �

gh

dP

dh
= �(b+1)2|U |U

g

(
hb+(1/2)

lb
− l√

h

)2
(21)

the velocity is

U =±
√
g|Sf|

�

1

b+1

(
hb+(1/2)

lb
− l√

h

)
(22)

so that, applying the constant friction slope hypothesis,

Q=
∫
A
Uh dy=±√g|Sf|

∫
A

1

(b+1)
√

�

(
hb+(3/2)

lb
−l

√
h

)
dy (23)

and we obtain for Sf:

Sf= |Q|Q

g

[∫
A

1

(b+1)
√

�

(
hb+(3/2)

lb
−l

√
h

)
dy

]2 (24)

This model also enables an estimate of the � parameter. Using (3), (18), (19) and (22),

�= gASf
|Q|Q

∫
A

1

(2b+1)�

(
h2b+2

l2b
−lh

)
dy (25)

4. CONSERVATIVE NUMERICAL SCHEMES

4.1. Unified discretization of the friction term

The conservative form of the system of differential equations (1) can be solved by means of a
conservative scheme. The following vector is defined for convenience [10]:

Gi+(1/2) =
(
Hqc− �Fqc

�x

)
i+(1/2)

(26)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:403–425
DOI: 10.1002/fld



DISCRETIZATION AND LIMITATION IN THE 1D SHALLOW-WATER MODEL 409

The unified discretization of the friction term consists of a similar numerical treatment of the
flux, friction and other source terms in the equation. A general conservative scheme with unified
discretization can be expressed as [9, 10, 15]

(1−��tKn
i )�u

n
i =�t (GL

i−(1/2)+GR
i+(1/2)) (27)

where K is the source term Jacobian, � is a coefficient controlling the implicitness of the source
term and GL,R represents the wave discretization particular to each numerical scheme.

We shall define the upwind matrices as

X± = 1

2
P

(
1±sign(�1) 0

0 1±sign(�2)

)
P−1 (28)

and the transcritical artificial viscosity coefficient as [15]

	ni+(1/2) =max
k

{
1
4 [�(�k)−2|�k |]i+(1/2) if (�k)

n
i <0 and (�k)

n
i+1>0

0 otherwise
(29)

The second-order vectors are defined as [16]

L± =
(
1∓K± �t

�x

)
P−1G± (30)

and the flux limiting matrices as

W±
i+(1/2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

(
(L±)1i+(1/2)±1

(L±)1i+(1/2)

)
0 0

0 �

(
(L±)2i+(1/2)±1

(L±)2i+(1/2)

)
0

0 0 �

(
(L±)3i+(1/2)±1

(L±)3i+(1/2)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

where Lk represents the k component of the vector L and � is the flux limiter function. Many
particular flux limiter functions are defined in previous works [17–19]. We use:

• ‘Superbee’ [17]: �(r)=max[0,min(1,2r),min(2,r)]
Then, the wave decomposition of the second-order TVD scheme is [16]

GL
i+(1/2) =

(
G+−	

�u
�x

)n

i+(1/2)
− 1

2
(PW+L+)ni−(1/2)+

1

2
(PW−L−)ni+(3/2)

GR
i+(1/2) =

(
G−+	

�u
�x

)n

i+(1/2)
+ 1

2
(PW+L+)ni−(1/2)−

1

2
(PW−L−)ni+(3/2)

(32)
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4.2. Pointwise discretization

Owing to the form of the friction source term, it is common to find applications using a pointwise
discretization. In that case, the quasi-conservative source term (10) is split into two parts, one of
them involving only the friction term, that are treated separately

Hqc=R+S (33)

where

R=
(

0

−T

)
, S=

⎛
⎜⎝

0

−gA
�zs
�x

⎞
⎟⎠ (34)

Redefining now the vector:

Gi+(1/2) =
(
S− �Fqc

�x

)
i+(1/2)

(35)

A conservative scheme, such as the one defined in the previous subsection, is then applied to the
flux derivative and bed slope source term so that the friction term is later added with the fully
implicit discretization as

�uni =�t (Rn+1
i +GL

i−(1/2)+GR
i+(1/2)) (36)

Although this discretization is widespread and recommended in several works [7, 8] due to its
simplicity and the possibility to use a fully implicit discretization of the friction term, Figure 5
shows that it produces the unbalance of the friction term and the rest of the terms in the equation
in steady state.

5. NUMERICAL STABILITY AND LIMITATION OF THE FRICTION TERM

Explicit numerical schemes applied to solve the unsteady Saint-Venant equations are traditionally
said to be numerically stable if the time step and the grid size chosen are linked by the CFL
condition [13] based on the advective part of the equations. The implementation of this condition
in Equation (1), with the flux Jacobian eigenvalues (6), gives

CFL=�t
�|u|+

√
(�2−�)u2+c2

�x
�1 (37)

where CFL is the dimensionless Courant–Friedrichs–Lewy number.
The friction source term in the Saint-Venant (1) equations is often one of the dominant terms,

especially in river and overland flow or in surface irrigation applications. This relevance has
consequences at the discrete level, particularly as far as numerical stability is concerned, and it
is essential to establish a stability condition that takes them into account. Assuming a domain as
sketched in Figure 3, a flat surface level develops over a rough adverse slope. Let us call i the dry
grid node immediately next to the wet/dry front. In this situation, the following properties hold
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Figure 3. Rough prismatic channel with adverse slope and flat surface level.

and are expected:

Qn
i = An

i =0, Qn
i−1�0, An

i−1�0, Qn+1
i �0, An+1

i �0 (38)

The following can be expressed for an explicit conservative numerical scheme with unified
discretization of the friction term applied to the dynamic equation at node i :

Qn+1
i =Qn

i −�t

[
T + �

�x

(
Q2

A

)]L
i−(1/2)

= �t

�x

[
−T �x

2
+ Q2

A

]n
i−1

(39)

where the arithmetic mean has been performed (Ti−(1/2) =(Ti−1+Ti )/2). In order to enforce the
physical conditions (38), the explicit numerical scheme must satisfy

�x� 2Q2

A|T | = 2R4/3

gn2
(40)

This condition was proposed in [6] where the usefulness of the restriction was proved in a practical
case.

It is important to note that the additional stability condition (40) is not necessary when a
fully implicit pointwise separate discretization of the friction term is used. Applying (36) to the
momentum conservation equation:

Qn+1
i =Qn

i −�t

(
gn2|Q|QP4/3

A7/3

)n+1

i
−�t

�

�x

(
Q2

A

)L

i−(1/2)
−�t

�

�x

(
Q2

A

)R

i−(1/2)
(41)

leads to(
1+�t

gn2|Q|P4/3

A7/3

)n+1

i
Qn+1

i =Qn
i −�t

�

�x

(
Q2

A

)L

i−(1/2)
−�t

�

�x

(
Q2

A

)R

i−(1/2)
(42)

using, for instance, a centred numerical scheme:(
1+�t

gn2|Q|P4/3

A7/3

)n+1

i
Qn+1

i =Qn
i − �t

2

[
�

�x

(
Q2

A

)n

i+(1/2)
+ �

�x

(
Q2

A

)n

i−(1/2)

]
(43)
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and, at the wet/dry front, the following can be expressed:

Qn+1
i = �t

2�x

(
Q2

A

)n

i+1(
1+�t

gn2|Q|P4/3

A7/3

)n+1

i

�0 (44)

which meets the stability condition (38). This superior stability of the fully implicit pointwise
discretization of the friction term, besides the simplicity of its formulation, justifies the widespread
application [7, 8], although Figure 5 shows that it produces the unbalance of the friction term and
the rest of the terms in the equation in steady state.

From the physical point of view, the friction force has an upper bound that cannot be exceeded:
the maximum value able to stop the flow. This fact, evident at the physical level, can be violated
at the discrete level and this is the reason why friction terms produce numerical instability in the
solution. Then, a numerical scheme subject only to the CFL condition cannot automatically satisfy
conditions (38), becoming necessary the additional restriction (40) with the unified discretization
of the friction term.

In this work, a different point of view to avoid the numerical instability associated with the
friction term is proposed. It consists of the suitable limitation of the numerical friction force value.
Integration of the quasi-conservative equation of the momentum conservation (10) in a grid cell
and in a time step:

∫ tn+1

tn
dt
∫ xi+1

xi
dx

[
�Q
�t

+ �
�x

(
�Q2

A

)]
=
∫ xi+1

xi
dx�Qn+

∫ tn+1

tn
dt

�

�x

(
�Q2

A

)
i+(1/2)

= −
∫ tn+1

tn
dt
∫ xi+1

xi
dx

(
gA

�zs
�x

+T

)
(45)

so that, making an explicit discretization,

�Qn
i+(1/2) =−�t

[
�

�x

(
�Q2

A

)n

i+(1/2)
+
(
gA

�zs
�x

)n

i+(1/2)
+T n

i+(1/2)

]
(46)

where arithmetical average has been chosen to be Qi+(1/2) =(Qi+1+Qi )/2. We shall define

Q∗
i+(1/2) =Qn

i+(1/2)−�t

[
�

�x

(
�Q2

A

)n

i+(1/2)
+
(
gA

�zs
�x

)n

i+(1/2)

]
(47)

involving all the forces except friction forces. Given that the maximum effect of the friction force
is to stop the water flow, a necessary condition in the solution is that the updated value of the
discharge at a point Qn+1 after the addition of the discrete friction term retains the same sign of
the value at the previous time level Q∗, that is,

Qn+1
i+(1/2)Q

∗
i+(1/2)�0⇒ (Q∗

i+(1/2)−�tT n
i+(1/2))Q

∗
i+(1/2)�0 (48)
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providing a numerical bounding value for the allowable friction force:

|T |ni+(1/2)�
|Q|∗i+(1/2)

�t
(49)

When the numerical friction force exceeds this value, it will be limited to the maximum value. It is
important to note that the limitation is automatically hold in steady cases. In this case, �Qn =0
and using (46) we obtain

T n
i+(1/2) =− �

�x

(
�Q2

A

)n

i+(1/2)
−
(
gA

�zs
�x

)n

i+(1/2)
(50)

Substituting the following equation into (47):

Q∗
i+(1/2) =Qn

i+(1/2)+�tT n
i+(1/2) (51)

and using that, by definition, T has the same sign as Q, it is true that (49)

|Q|∗i+(1/2)

�t
= |Qn

i+(1/2)+�tT n
i+(1/2)|

�t
= |Q|ni+(1/2)

�t
+|T |ni+(1/2)�|T |ni+(1/2) (52)

6. APPLICATIONS

6.1. Hydrostatic test case

Still water situations in the presence of variable bed and channel shape are a challenging problem
for advection schemes. In this case, the equations in quasi-conservative form (10) reduce to

�zs
�x

=0

that is, the free surface level is uniform. Advection schemes are not always able to maintain the
static equilibrium at the discrete level. A test case proposed by Goutal and Maurel [20] has been
selected. It is a channel rectangular in cross section with variable width and bed level as Figure 4
shows. A Manning coefficient n=0.015 is assumed. The evolution in time of an initial uniform
12m free surface level of motionless water will be studied during 200 s in a 150-cell grid. Figure 4
shows that both the unified discretization and the pointwise discretization of the fiction term in
the scheme considered in Section 4 maintains a perfect hydrostatic equilibrium. This is due to the
fact that the schemes are perfectly balanced at the discrete level and do not produce any spurious
discharge in this case of still water.

6.2. MacDonald’s test case

MacDonald [21] and MacDonald et al. [22] proposed a series of steady open channel flow test
cases with analytical solution. In all of them, sloping bed and friction force are considered. The
steady Saint-Venant equations (1), with �=1, are

Q = const.

�
�x

(
Q2

A
+gI1

)
= g (I2+AS0)−T

(53)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:403–425
DOI: 10.1002/fld



414 J. BURGUETE, P. GARCÍA-NAVARRO AND J. MURILLO
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Figure 4. Hydrostatic test case: water surface and bed longitudinal profiles (a) initial, final using
(c) unified, (d) pointwise discretization of the friction term. (b) Plant view.

Given a constant discharge and an analytical water depth function, the steady solutions can be
found from the momentum equation:

S0= 1

gA

[
T −gI2+ �

�x

(
Q2

A
+gI1

)]
(54)

where T is modelled via (12). Then, the channel bed form function can be obtained.
One of these test cases has been chosen to show the influence of the discretization of the friction

term on the quality of the steady-state solution. A subcritical flow in a channel of rectangular
cross section 10m wide and 150m long is assumed. The steady discharge is 20m3/s, and the bed
material is characterized by a friction Gauckler–Manning coefficient 0.03s/m1/3. The water depth
is defined by the function

h=0.8+0.25exp

[
−135

4

(
x−75

150

)2
]

(55)

Dry initial conditions and a time of 800 s are used to reach convergence to the steady state.
Figure 5 shows the analytical water surface and bed level longitudinal profiles, and the numerical
results obtained using the second-order TVD scheme on a 50-cell grid and both the unified and
pointwise discretizations of the friction term after convergence to steady state. It can be seen that

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:403–425
DOI: 10.1002/fld



DISCRETIZATION AND LIMITATION IN THE 1D SHALLOW-WATER MODEL 415

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

z 
(m

)

x (m)
0 20 40 60 80 100 120 140

x (m)

0 20 40 60 80 100 120 140
x (m)

Surface level
Bottom level

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

β

Pointwise
Unified

Analytical

 19.96

 19.98

 20

 20.02

 20.04

D
is

ch
ar

ge
 (

m
3 /

s)

Pointwise
Unified

Analytical

(a) (b)

(c)

Figure 5. (a) Analytical surface and bottom levels; (b) depth; and (c) discharge with different treatments
of the friction term in the MacDonald test case.

only the unified method is able to provide a right balance and a perfect conservation in the steady
discharge.

6.3. Experiments on an impervious irrigation border

The experimental data from [23] were used to illustrate the improvement in the proposed limitation
of the friction term in cases of unsteady flow in conditions of high relative roughness. In that
experiment, a free-draining irrigation border 200m long and 2m wide with a slope of S0=0.000671
was constructed and covered with a plastic film. A fine layer gravel (with d50 of approximately
10mm) was added on top of the plastic film. A steady flow case was measured for a discharge of
Q=0.010m3/s. Two unsteady experiments of water flow advancing over the dry border bed were
performed using inlet discharges of Q=0.0047 and 0.0117m3/s. For the numerical simulation
of the unsteady flow, a second-order TVD scheme with ‘Superbee’ flux limiter with unified and
implicit (�=0.5) discretization of the friction term has been used.

The roughness coefficient is estimated assuming normal flow (S0≈ Sf) conditions at steady state
using the experimental steady flow depth of H =50mm. Then, from (13) or (21):

n≈
√
S0H2/3

U
, �≈ gS0

(b+1)2U 2

(
Hb+(1/2)

lb
− l√

H

)2

(56)
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Figure 6. Discharge longitudinal profiles for Q=0.0117m3/s and t=2400s simulated with
different mesh cell sizes with and without the limiting friction term. Power law friction model

with b=0.3, l=10mm and �=0.12 was used.

Considering the granulometry of the gravel, a characteristic roughness length of l=d50=10mm
is used and b=0.25 typical in gravel bed rivers [6], a value of �=0.12 has been adjusted. In all
cases, this length is used as the water depth threshold value for water movement.

Figure 6 is a plot of the discharge longitudinal profiles for Q=0.0117m3/s and t=2400s
simulated with different mesh cell sizes with and without the limiting source term. It shows that
when the friction force is not limited, the numerical solution becomes more and more unstable as
the grid size is increased despite the implicit discretization of the source term. With the proposed
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Figure 7. Advance curves for (a) Q=0.0047m3/s, (b) Q=0.0117m3/s and different cell sizes with and
without the limiting friction term. Power law friction model with b=0.3, l=10mm and �=0.12 was used.

bounding limit for the discrete friction force, the numerical scheme is not only stable for any grid
size (under the CFL condition) but is also able to produce numerical solutions on coarser grids of
the same quality as those obtained in finer grids with the non-limited method.

This fact is also noticeable in Figure 7, where the time advance of the wetting front is plotted for
inlet discharges Q=0.0047 and 0.0117m3/s as computed on different meshes with and without
the limiting friction term. The results show that the numerical advance is independent of the grid
size when the limitation over the friction term is applied. They also show that the same accuracy is
reached with this technique on a coarse grid and by the non-limited technique on a much finer grid.

Finally, Figure 8 compares the advancing front computed using the Manning and power law
friction models. In both cases, the limiting technique of the discrete friction force is applied. Both
models predict reasonably well the advance with a slight tendency to overpredict the advancing
speed. A slightly better prediction is provided by the power law model.
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Figure 8. Advance curves for (a) Q=0.0047m3/s and (b) Q=0.0117m3/s measured and simulated with
�x=1m and limiting friction term for different friction models.

6.4. Neila River

Neila River flows through a mountain region of central Spain. It is highly irregular in shape and
steep (with average slope around 20% in some reaches) as it can be seen in Figure 9. The base
flow is very low (around 1m3/s), and the stony but vegetated river bed is associated with a high
friction factor n=0.05s/m1/3. A reach of 18 km has been characterized by means of 48 cross
sections. The physical conditions of steep slope, low base discharge, high roughness and many
transcritical points make this river a challenging test case for the numerical schemes to be able
to produce a stable solution. The simulations are made with the second-order TVD scheme with
an implicit (�=0.5) unified discretization of the friction term. A first run was performed to reach
base flow steady-state conditions starting from dry bed initial conditions.

Several spatial grid and time step sizes have been combined in order to estimate their influence
in the numerical results during this first run. In all cases, the following water depth threshold value,
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Figure 9. Bed slope and three typical cross sections of the Neila River.

derived from (40), was imposed:

h�
(
gn2�x

2

)3/4

⇒Q=0 (57)

This condition is necessary to stabilize the solution since it avoids unrealistic growing tendencies
in the discrete friction terms. It stops water at depth values less than the limit imposed leading,
for coarse grids, to some kind of pulses in the flow during the transient calculation that spoils the
quality of the solution.

The water depth in the base flow steady profile can be as low as 4 cm in some parts producing,
from the stability condition (40), that �x�1.1m is necessary to ensure smooth, continuous and
steady discharge result without limiting the friction term. As the grid size is increased above
that limit, despite the implicit discretization of the friction term, the numerical solutions become
eventually unstable. The traditional remedy of trying to reduce the instabilities by decreasing
the time step size does not work since using in �x=2m the time step given by CFL=0.25 or
CFL=0.02 in the grid �x=10m does not improve the stability of the solution due to the inadequacy
of the space discretization. However, applying the proposed limitation over the numerical friction
force, the scheme remains stable with larger grid sizes (Figure 10).

In a second run, the hydrograph deduced from a hypothetical failure of a dam located upstream
of the river reach was used as the inlet boundary condition over the initial conditions given by the
base flow steady state. In this simulation, the friction force limiting technique was used as well
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Figure 10. Steady-state longitudinal profile of discharge for Neila River using
different time steps and cell mesh sizes.

as �x=15m and CFL=0.9. Figure 11 shows the inlet hydrograph and the longitudinal profiles
of discharge, water depth, Froude number and � at different times. The various sub/supercritical
transitions are noticeable. The estimate of � according to (17) shows the values reached by this
parameter in natural rivers, as indicated in [6, 24].
6.5. Tsunami runup onto a complex 3D beach

This test case has been taken from a benchmark problem of the Third International Workshop on
Long Wave Runup Models. It is a 1

400 -scale laboratory experiment of the Monai runup (Okushiri
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Figure 11. (a) Inlet hydrograph; (b) discharge; (c) water depth; (d) Froude number; and (e) � coefficient
simulated in Neila River at different times.

Island, Japan) using a large-scale tank (205m long, 6m deep, 3.4m wide) at Central Research
Institute for Electric Power Industry (CRIEPI) in Abiko, Japan. A benchmark test case was defined
focusing on a region near the shoreline where experimental data were measured. A detailed
description as well as the experimental data is available from [25]. This test case description does
not provide any friction information. According to the reported bed material, we have used a
Gauckler–Manning number of n=0.015s/m1/3. For the simulation, (16) and (17) models were
used in a cell grid size of 0.014m. It is emphasized that the problem simulates the runup in the
reduced domain 5.4m long and 3.4m wide. Figures 12 and 13 represent the bathymetry used in
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Figure 12. Plant view of the domain and bed level contour lines.
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Figure 13. Bathymetry and measurement points. Note that the vertical scale is distorted.

the reduced region and the location of the gauging points. The incident wave from offshore at
the water depth h=13.5cm was introduced in our 1D model through the inlet boundary. In the
laboratory model, the other three boundaries were reflective vertical sidewalls and so have been
considered in our model.

Figure 14 shows the time evolution of the water surface level at the inlet (a) (upstream boundary
condition) and the result from the simulation at x=4.521m (b) together with the measurements
provided at three gauging points with the same x and different y coordinate positions. The plot
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Figure 14. Time evolution of the water surface level (a) at the inlet section (b) at x=4.521m as simulated
and measured at three points with different y positions.

shows that, despite the complexity of the bottom surface and the 2D character of the example, the
1D model provides fairly well the wave arrival time, shape and amplitude.

7. CONCLUSIONS

Two main options for the discretization of the friction term in the 1D shallow-water equations
have been detailed, analysed and compared. One of them is the pointwise discretization, which is
separate and independent of the technique used for the rest of the terms in the dynamic equation,
and the other is the unified discretization in which all the terms are treated in a similar form.
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The comparison of the two techniques in cases of steady flow shows that the pointwise discretiza-
tion, although stable when fully implicit, is unable to provide a good balance among the terms of
the equation, hence producing bad-quality steady states.

Furthermore, a form of limiting the value of the discrete friction force is proposed in order to
prevent that the numerical model produces values exceeding the maximum friction force physically
allowed. This limitation improves the quality of unsteady solutions in wet/dry fronts and guarantees
the numerical stability in cases with dominant friction terms.
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