
Upper Paraguay river at Porto Murtinho, Mato Grosso do Sul, Brazil, featuring a flood hydrograph
lasting one year (the maximum possible), clearly the quintessential flood wave.
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ABSTRACT.  This paper contrasts kinematic and dynamic waves in open-channel flow. Kinematic
and  dynamic  waves  lie  each  at  either  extreme  of  the  wave  scale,  i.e.,  the  dimensionless
wavenumber spectrum. Kinematic waves are on the left side (small value), and dynamic waves are
on  the  right  side  (large  value).  Kinematic  waves  travel  with  a  constant  celerity  and  are  non-
diffusive.  Dynamic  waves  travel  with  a  constant  celerity  and  are  also  non-diffusive.
Mixed  kinematic-dynamic  waves  travel  with  a  celerity  which  varies  with  the  dimensionless
wavenumber, and this property gives them the capability to diffuse. In certain cases, these mixed
kinematic-dynamic  waves  may  be  so  strongly  dissipative  as  to  defy  calculation  altogether.
Diffusion waves lie in between kinematic and mixed kinematic-dynamic waves, in terms of relative
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scale. Diffusion waves are shown to be mildly diffusive; therefore, they are admirably suited to the
modeling of flood waves.

1.  INTRODUCTION

This  paper  contrasts  kinematic  and  dynamic  waves  in  open-channel  flow.  The  objective  is  to
understand these concepts thoroughly, in order to facilitate their wider use in engineering practice.
Kinematic and dynamic waves lie each at either extreme of the wave scale, i.e., the dimensionless
wavenumber spectrum. Kinematic waves are on the left side (small value), and dynamic waves are on
the right side (large value). Taken on their own, these two concepts are mutually exclusive; either a
wave is kinematic or it is dynamic. Toward the middle of the scale, a wave that is neither kinematic nor
dynamic  may be construed as  being  a  mixed kinematic-dynamic  wave,  for  lack  of  a  better  term.
The varying group celerity makes these waves diffusive, ranging from mildly diffusive to extremely
diffusive.

2.  WAVE SCALE

The "scale" of the wave is what determines whether a wave is either kinematic or dynamic. In this
context, "scale" refers not to the absolute value of wavenumber, otherwise defined as σ = 2π /L, but
rather to its relative value, or dimensionless wavenumber, defined as σ* = 2π (Lo /L). The quantity Lo

is the reference channel length, i.e., the horizontal distance, along the channel, wherein the steady
equilibrium flow drops a head equal to its depth (Ponce and Simons, 1977).

The  effect  of  the  dimensionless  wavenumber  is  to  substantially  reduce  the  number  of  orders  of
magnitude required for the analysis. In effect, Figure 1 shows the variation of dimensionless relative
wave celerities cr*  plotted across only six  (6)  orders of  magnitude of  dimensionless wavenumbers

σ*  (0.001 to 1000).
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Fig. 1   Dimensionless relative wave celerity cr*
 vs dimensionless wavenumber σ*.

3.  KINEMATIC WAVES

Box A.  To facilitate the understanding of this section, we define the following terms:

1. Equilibrium flow depth do

2. Equilibrium flow velocity uo

3. Stream/channel bottom slope So

4. Wavelength (of the perturbation) L

5. Wavenumber σ = 2π / L

6. Reference channel length Lo = do /So

7. Dimensionless wavenumber σ* = 2π (Lo /L)

8. Wave celerity (speed of the perturbation) c

9. Relative wave celerity (wave celerity relative to the flow) cr = c - uo

10. Dimensionless relative wave celerity cr*
 = cr /uo

Figure  1  shows  the  plot  of  relative  dimensionless  wave  celerities  across  the  dimensionless
wavenumber spectrum, from very small, corresponding to kinematic waves (σ* = 0.001), to very large,

corresponding to dynamic waves (σ* = 1000) (Ponce and Simons, 1977).

Note that throughout the dimensionless wavenumber spectrum σ*,  the dimensionless relative wave
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celerity cr*
 is a constant and equal to cr*

 = 0.5 only for Froude number F = 2. We note specifically that

this flow condition corresponds to Chezy friction in a hydraulically wide channel (se Box B  below)
(Ponce and Simons, 1977). This is the physical condition for which all wave scales travel with the
same celerity, representing the onset of flow stability/instability: stability for F < 2, and instability F > 2.
Note that the flow condition for which F = 2 is referred to as neutrally stable flow. Moreover, it can be
shown that  the condition Froude number F  = 2 is tantamount to Vedernikov number V  =  1,  thus,
reinforcing the findings of the wave propagation analysis (Ponce, 1991).

Fig. 2   Dimensionless relative wave celerity cr*
 vs dimensionless wavenumber σ*.

Further examination of Fig. 1 reveals that the kinematic waves are positioned to the left of the figure, in
a fashion asymptotic to the constant value cr*

 = 0.5 in the extreme left of the figure, which corresponds

to the dimensionless relative kinematic wave celerity for Chezy friction in a hydraulically wide channel
(Ponce, 2014).

The concept of kinematic wave celerity, which is akin to that of flood wave celerity, is due to Seddon
(1900),  who first  derived the formula bearing his  name. Related expressions are contained in  the
following box.

Box B.  Expressions for kinematic wave celerity, Seddon celerity, or flood wave celerity.

1. Discharge Q

2. Flow area A

3. Mean flow velocity: uo = Q / A

4. Stage y

5. Channel top width T
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6. Differential of flow area: dA = T dy

7. Equation of the discharge-flow area rating: Q = α Aβ

8. Slope of the discharge-flow area rating: dQ / dA = α β A β - 1 = β Q / A = β uo

9. Seddon celerity, or flood wave celerity: c = dQ / dA = (1/T ) (dQ / dy) = β uo

10. Value of β applicable for Chezy friction in hydraulically wide channels: β = 1.5

11. Relative flood wave celerity (for hydraulically wide Chezy friction): cr = 1.5 uo - uo = 0.5 uo

12. Dimensionless relative kinematic wave celerity (for hydraulically wide Chezy): cr*
 = 0.5

We wish to reiterate that kinematic waves do exist, admittedly only as a convenient approximation,
typically on the left side of the dimensionless wavenumber spectrum. They correspond to a large class
of flood waves, particularly those that are subject to very little (or otherwise, negligible) attenuation.
They also may show up in overland flow modeling, wherein the prevailing bottom slopes are large
enough to trigger a kinematic flow condition and the resulting kinematic waves (Woolhiser and Liggett,
1967). The early work of Seddon (1900), followed by that of Lighthill and Whitham (1955), have been
important  milestones  in  advancing  kinematic  wave  applications  in  hydraulic  and  hydrologic
engineering.

4.  DYNAMIC WAVES

Dynamic waves lie to the right of the dimensionless wavenumber spectrum, and the dimensionless
relative wave celerities are constant across the dimensionless wavenumbers, and a function of the
Froude number of the equilibium flow, with smaller celerities corresponding to larger Froude numbers,
and vice versa; for instance, cr*

 = 1 is associated with F = 1; and cr*
 = 100 is associated with F = 0.01.

Clearly,  the  dynamic  wave celerity  is  indeed a  function  of  the  equilibrium flow Froude number,  a
situation which was not the case for the kinematic wave.

Box C.  To calculate the values of dynamic wave celerities, we define the following terms:

1. Equilibrium flow depth do

2. Equilibrium flow velocity uo

3. Gravitational acceleration g

4. Dynamic wave celerity, or Lagrange celerity (two components) cd = uo ± (g do)1/2

5. Relative dynamic wave celerity (relative to the flow) crd = ± (g do)1/2

6. Dimensionless relative dynamic wave celerity cdrd = ± (g do)1/2 / uo

7. Froude number of the equilibrium flow Fo = uo / (g do)1/2

8. Dimensionless relative dynamic wave celerity cdrd = 1 / Fo
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Figure 1 shows the values of dimensionless relative dynamic wave celerities cdrd lying to the right of the

figure.  For  instance,  using  the  last  definition  of  cdrd  (labeled  8  in  Box  C  above),  it  follows  that:

(a) for Fo = 0.01, cdrd = 100; (b) for Fo = 0.02, cdrd = 50; and (c) for Fo = 0.04, cdrd = 25; and so on.

We have  shown  that  Figure  1  correctly  depicts  the  values  of  dimensionless  relative  dynamic,  or
Lagrange, celerities. Thus, we show that Figure 1 encompasses both kinematic and dynamic waves in
the same figure. Reiterating, dynamic waves lie to the right of the dimensionless wavenumber σ*,

wherein the dimensionless relative dynamic wave celerities are a function of the Froude number of the
equilibrium flow.

According to Ponce and Simons (1977),  the attenuation of a dynamic wave is zero, i.e., dynamic
waves are not subject to attenuation (i.e., wave dissipation), at least in a one-dimensional analysis.
This  conclusion follows directly  from Fig.  1,  because in  the applicable dynamic range,  toward the
extreme right of the figure, the wave celerity is shown to be constant and, thus, independent of scale.
This conclusion confirms that a dynamic wave is not subject to attenuation. Thus, a dynamic wave is a
comparatively  small  surface  wave,  featuring  a  correspondingly  small  dimensionless  wavenumber,
traveling  at  a  dimensionless  relative  celerity  which  is  the  reciprocal  of  the  Froude number  of  the
equilibrium flow, and it is not subject to attenuation.

Dynamic waves do exist, admittedly only as a convenient approximation, typically on the right side of
the  dimensionless  wavenumber  spectrum.  They  correspond  to  a  class  of  relatively  short  surface
waves, particularly those that are subject to very little or negligible attenuation.

Fig. 1   Dimensionless relative wave celerity cr*
 vs dimensionless wavenumber σ*.

5.  MIXED KINEMATIC-DYNAMIC WAVES
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Granted that kinematic waves lie to the left of the dimensionless wavenumber spectrum. while dynamic
waves lie to the right, with neither being subject to attenuation. This is due to the constancy of the
respective celerities within the specified range of analysis.  Wave attenuation is due to the varying
group celerity, which attains a maximum value, depending on the Froude number, toward (the right of)
the midrange dimensionless wavenumbers. The greater the variability in celerity (with dimensionless
wavenumber),  the greater  the wave attenuation,  the latter  shown to increase with equilibrium flow
Froude numbers; compare Figs. 1 and 2. Wave attenuation reaches a peak at a value of dimensionless
wavenumber σ* corresponding to the point of inflection in the celerity-wavenumber curve.

We conclude that toward the middle of the dimensionless wavenumber spectrum, wave attenuation is a
maximum, while toward the extremes, both left and right, it is a minimum (Fig. 2). Correspondingly,
similar conclusions apply for wave amplification, as observed in Fig. 3.

Fig. 1   Dimensionless relative wave celerity cr* vs dimensionless wavenumber σ*.
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Fig. 2   Logarithmic decrement -δ vs dimensionless wavenumber σ*  for F < 2.

Fig. 3   Logarithmic increment +δ vs dimensionless wavenumber σ*  for F > 2.

Therefore, mixed kinematic-dynamic waves are subject to varying attenuation, from mild to very strong,
with the amount of attenuation varying with the value of dimensionless wavenumber, relative to the
location  of  the  point  of  inflection  in  the  celerity-wave  number  curve.  In  certain  cases,  the  mixed
kinematic-dynamic  wave  may  be  so  strongly  dissipative  as  to  defy  calculation  altogether.
This predicament was admirably described by Lighthill and Whitham (1955) in their seminal treatise
on kinematic waves.
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"...  In some applications,  including the case of flood waves,  kinematic waves and dynamic
waves are both possible together. However, the dynamic waves have both a much higher wave
velocity  and  also  a  rapid  attenuation.  Hence,  although  any  disturbance  sends  some  signal
downstream at the ordinary wave velocity for long gravity waves [Note that, in the present
context, these are the dynamic waves], this signal is too weak to be noticed at any considerable
distance downstream, and the main signal arrives in the form of a kinematic wave at a much
slower speed." (op. cit., page 285).

In closing, we wish to point out that our "mixed kinematic-dynamic waves" have been, for the past
nearly 50 years, simply referred to as "dynamic waves", thereby contributing to the semantic confusion
(Fread, 1985).

6.  DIFFUSION WAVES

Having established conclusively that neither kinematic nor dynamic waves attenuate, and conversely,
that  mixed kinematic-dynamic waves could be subject  to  very strong attenuation,  we feature here
another type of intermediate wave, which, as far as the value of dimensionless wavenumber, lies in
between kinematic and mixed kinematic-dynamic waves. This wave is properly a kinematic wave with
diffusion, to follow Lighthill and Whitham (1955), or, more concisely, a diffusion wave, to follow Ponce
and Simons (1977).  It  is  defined by including,  in  the wave definition,  the pressure-gradient  term.
The latter acts to produce the diffusion, which is patently absent from the kinematic wave proper, as
shown in the following table.

Type of wave / Term included Friction and
gravity

Pressure
gradient Inertia Wave

diffusion

1. Kinematic ✓     No

2. Diffusion ✓ ✓   Yes

3. Mixed kinematic-dynamic ✓ ✓ ✓ Yes

4. Dynamic ✓ ✓ No

We conclude that wave diffusion is produced by: (1) the interaction of the pressure-gradient term with
the friction and gravity terms, as in the diffusion wave; or (2) by the interaction of all the (four) terms in
the equation of motion, i.e., as in the mixed kinematic-dynamic wave.

The diffusion of the diffusion wave is described by the logarithmic decrement δ = - 2 π (σ* / 3), which is

applicable  only  within  the  range  of  dimensionless  wavenumbers  wherein  the  diffusion  wave  is
prevalent, i.e., within a narrow range between that of kinematic waves (extreme left of chart) and that of
mixed kinematic-dynamic waves (toward the center right of the chart) (Ponce and Simons, 1977).

Diffusion waves turn out to be more common than either kinematic or mixed kinematic-dynamic waves
and, therefore, this helps explain their growing popularity in practical applications. Kinematic waves do
not attenuate, and mixed kinematic-dynamic waves may actually attenuate too much. Diffusion waves
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find their demonstrably best applicability in the routing of flood waves, which typically are subjected to
some, but not too much, wave attenuation.

7.  SUMMARY

A review of several relevant types of shallow-water waves in open-channel flow are discussed and
compared with  regard to  their  celerity  and attenuation properties.  These waves are:  (1)  kinematic
waves, (2) dynamic waves, (3) mixed kinematic-dynamic waves, and (4) diffusion waves.

Kinematic  waves  travel  with  a  constant  celerity  and  are  non-diffusive.  The  constant  celerity  of
kinematic waves has been referred to in the flood routing literature as the 'Seddon celerity'.

Dynamic waves travel with a constant celerity and are non-diffusive. The constant celerity of dynamic
waves is referred to as the 'Lagrange celerity', applicable to "short" waves in open-channel flow.

Mixed  kinematic-dynamic  waves  travel  with  a  celerity  which  varies  with  the  dimensionless
wavenumber,  and this  property  gives them the capability  to  diffuse,  i.e.,  to  attenuate or  dissipate.
In certain cases,  these mixed kinematic-dynamic waves may be so strongly dissipative as to defy
calculation altogether.

Diffusion waves lie in between kinematic and mixed kinematic-dynamic waves, in terms of relative
scale. These waves travel approximately with the Seddon celerity and are shown to be mildly diffusive;
therefore, they remain admirably suited to the modeling of flood waves.
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