

Fig. 1 Vegetated earthmounds and surrounding grasslands, Pantanal of Mato Grosso, Brazil.

HOW TO CALCULATE ONLINE REFERENCE CROP EVAPOTRANSPIRATION

BY THE PENMAN-MONTEITH METHOD?

Victor M. Ponce

Professor Emeritus of Civil and Environmental Engineering

San Diego State University, San Diego, California

05 March 2024

ABSTRACT. In this article we show how to calculate online reference crop potential evapotranspiration by the Penman-Monteith method. The latter is a combination method based on a modification of the classical evaporation method developed by Penman in the 1940s. The Penman-Monteith method has been endorsed by the United Nations Food and Agriculture Organization (FAO) for general use in the calculation of reference crop potential evapotranspiration. The online calculator **ONLINE_PENMAN_MONTEITH** was developed in 2020 by the **Visualab** at San Diego State University.

1. INTRODUCTION

The calculation of reference crop evapotranspiration is a preeminent analytical tool used in the design of irrigation projects. The FAO Penman-Monteith method has been recommended as the method of choice for calculating reference crop evapotranspiration (ETo) (Irrigation and Drainage Paper 56 - Chapter 2, FAO, 1998). In this article we present an online calculator for the Penman-Monteith method. This calculator was developed in 2020 by the Visualab, a computational laboratory of the Department of Civil, Environmental, and Construction Engineering, San Diego State University, San Diego, California.

2. PENMAN-MONTEITH METHOD

The Penman-Monteith method is a modification of the Penman (1948) method. The original Penman method is a combination method to calculate evaporation (**Ponce, 2014a: Combination Methods**) in which the total evaporation rate is calculated by weighing the evaporation rate due to net radiation and the evaporation rate due to mass transfer, as follows :

$$E = \frac{\Delta E_n + \gamma E_a}{\Delta + \gamma}$$
(1)

in which E = total evaporation rate; E_n = evaporation rate due to net radiation; E_a = evaporation rate due to mass transfer; Δ = saturation vapor pressure gradient, a function of air temperature; and γ = psychrometric constant, which may be shown to vary slightly with temperature. The mass-transfer evaporation rate E_a is calculated with an empirical mass-transfer formula (Ponce, 2014a: Mass-Transfer Approach).

In the Penman-Monteith method, the mass-transfer evaporation rate E_a is calculated based on physical principles. The original form of the Penman-Monteith equation, in dimensionally consistent units, is the following (Ponce, 2014b):

$$\rho\lambda E = \frac{\Delta H + [\rho_a c_p (e_s - e_a) / r_a]}{\Delta + \gamma^*}$$
(2)

in which

- $\rho\lambda E$ = total evaporative energy flux, in cal/(cm²-s);
- ρ = density of water, in gr/cm³;
- λ = heat of vaporization, in cal/gr;
- *E* = evaporation rate, in cm/s;
- Δ = saturation vapor pressure gradient, in mb/°C;
- H = energy flux supplied externally, by net radiation, in cal/(cm²-s);
- ρ_a = density of moist air, in gr/cm³;
- c_p = specific heat of moist air, in cal/(gr-°C);
- (*e_s e_a*) = vapor pressure deficit, in mb;
- r_a = external (aerodynamic) resistance, in s/cm; and
- γ^* = modified psychrometric constant, in mb/°C, equal to:

$$\gamma^* = \gamma \left(1 + \frac{r_s}{r_a}\right) \tag{3}$$

in which:

- γ = psychrometric constant, in mb/°C, which varies slightly with temperature (**Ponce, 2014c**), and
- r_s = internal (stomatal or surface) resistance, in s/cm.

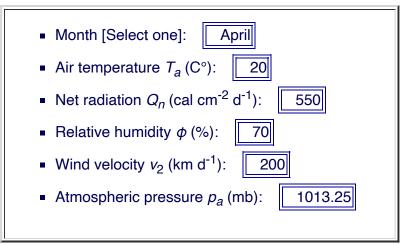
The quantity r_a^{-1} is the external conductance, in cm³ of air per cm² of surface per second (cm/s).

In evaporation rate units, Eq. 2 is expressed as follows:

$$E = \frac{\Delta E_n + [\rho_a c_p (e_s - e_a) / (r_a \rho \lambda)]}{\Delta + \gamma^*}$$
(4)

in which

- *E* = total evaporation rate, in cm/s;
- *E_n* = evaporation rate due to net radiation, in cm/s;
- ρ = density of water, in gr/cm³;
- λ = heat of vaporization, in cal/gr;


and

• Δ , γ^* , ρ_a , c_p , $(e_s - e_a)$, and r_a are in the same units as in Eq. 2.

Equation 4 is the equation of the Penman-Monteith method used in the online calculator presented here.

3. USE OF THE ONLINE CALCULATOR

We run the calculator **ONLINE_PENMAN_MONTEITH** with the following input data:

Output from the calculator is shown below.

The reference crop potential evapotranspiration for the month of April is: 19.32 cm. **ANSWER**.

online_penman_monteith: Potential evapotranspiration by the Penman-Monteith method

Formulas

$$(e_s-e_a) \cong (e_o-e_a) = e_o[1 + (\phi/100)]$$

 $E_n = Q_n/(\varrho\lambda)$
 $E_a = 86400[(\varrho_a c_p)/(\varrho\lambda\gamma)](e_s-e_a)(r_s+r_a)^{-1}$
 $\Delta = (0.00815 \ T_a + 0.8912)^7$
 $\gamma * = \gamma \ [1 + (r_s/r_a)]$
 $E = (\Delta \ E_n + \gamma * \ E_a) / (\Delta + \gamma *)$

[Description][Sample input]Month:JanuaryAir temperature
$$T_a$$
 (°C):20Net radiation Q_n (cal cm⁻² d⁻¹):550Relative humidity ϕ (%):70Vind velocity v_2 (km d⁻¹):200Atmospheric pressure p (mb):1013.25[Leave blank to specify sea-level atmospheric pressure]ResetCalculateVour request was processed at 04:10:01 pm on March 5th, 2024 [240305 16:10:01].Thank you for running online_penman_monteith. Please call again. [200803]

REFERENCES

INPUT DATA:

Food and Agriculture Organization of the United Nations (FAO). 1998. Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56. https://www.fao.org/3/X0490E/x0490e00.htm#Contents

Penman, H. L. 1948. "Natural Evaporation from Open Water, Bare Soil and Grass," *Proceedings of the Royal Society,* London, Vol. 193, 120-145.

Ponce, V. M. 2014a. Engineering Hydrology: Principles and Practices. https://ponce.sdsu.edu/enghydro/index.html

Ponce, V. M. 2014b. The Penman-Monteith method. https://ponce.sdsu.edu/penman_monteith_method.html

Ponce, V. M. 2014c. The psychrometric constant. https://ponce.sdsu.edu/psychrometric_constant.html

Ponce, V. M. 2020. ONLINE_PENMAN_MONTEITH. https://ponce.sdsu.edu/onlinepenmanmonteith.php

240305